Show simple item record

dc.contributor.authorGómez Pérez, Domingo es_ES
dc.contributor.authorGutiérrez Gutiérrez, Jaime es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-02-11T13:37:08Z
dc.date.available2016-02-11T13:37:08Z
dc.date.issued2014es_ES
dc.identifier.issn0025-5718es_ES
dc.identifier.issn1088-6842es_ES
dc.identifier.otherMTM2011-24678es_ES
dc.identifier.urihttp://hdl.handle.net/10902/8037
dc.description.abstractLet $ p$ be a prime and $ \mathbb{F}_p$ the finite field with $ p$ elements. We show how, when given an irreducible bivariate polynomial $ F \in \mathbb{F}_p[X,Y]$ and an approximation to a zero, one can recover the root efficiently, if the approximation is good enough. The strategy can be generalized to polynomials in the variables $ X_1,\ldots ,X_m$ over the field $ \mathbb{F}_p$. These results have been motivated by the predictability problem for nonlinear pseudorandom number generators and other potential applications to cryptography.es_ES
dc.format.extent13 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Mathematical Societyes_ES
dc.rights© American Mathematical Society First published in Mathematics of computation in vol.83 (2014), pp. 2953-2965, published by the American Mathematical Societyes_ES
dc.sourceMathematics of computation 83 (2014), 2953-2965es_ES
dc.titleRecovering zeros of polynomials modulo a primees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1090/S0025-5718-2014-02808-1es_ES
dc.type.versionacceptedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record