Stable Polynomials over Finite Fields
View/ Open
Identificadores
URI: http://hdl.handle.net/10902/8028DOI: DOI: 10.4171/RMI/791
ISSN: 0213-2230
ISSN: 2235-0616
Full record
Show full item recordDate
2014Derechos
© European Mathematical Society Publishing House. Publicado originalmente en la Revista matemática iberoamericana, Vol. 30, Nº 2 (2014), Pp. 523-535
Publicado en
Revista Matemática Iberoamericana, Vol. 30, N. 2 (2014), Pp. 523-535
Publisher
European Mathematical Society
Abstract:
We use the theory of resultants to study the stability, that is, the property of having all iterates irreducible, of an arbitrary polynomial f over a finite field Fq. This result partially generalizes the quadratic polynomial case described by R. Jones and N. Boston. Moreover, for p = 3, we show that certain polynomials of degree three are not stable. We also use the Weil bound for multiplicative character sums to estimate the number of stable polynomials over a finite field of odd characteristic.
Collections to which it belong
- D21 Artículos [232]
- D21 Proyectos de Investigación [183]