Show simple item record

dc.contributor.authorGonzález Ortiz, Manuel 
dc.contributor.authorLeón Saavedra, Fernando
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-02-03T12:13:13Z
dc.date.available2016-02-03T12:13:13Z
dc.date.issued2014
dc.identifier.issn0378-620X
dc.identifier.issn1420-8989
dc.identifier.urihttp://hdl.handle.net/10902/8000
dc.description.abstractABSTRACT:Given a bounded linear operator T acting on a complex Banach space, we obtain a spectral condition implying that each operator in the commutant of T different from ?I has a hypercyclic multiple, and we show several examples of operators satisfying this condition. We emphasize that for some of these examples we do not have a description of the commutant of T.es_ES
dc.format.extent9 p.es_ES
dc.language.isoenges_ES
dc.publisherBirkhauser Verlag AGes_ES
dc.rights© Springer The final publication is available at Springer via http://dx.doi.org/ 10.1007/s00020-014-2129-xes_ES
dc.sourceIntegral Equations and Operator Theory 80 (2), pp. 265-274es_ES
dc.subject.otherComposition operatores_ES
dc.subject.otherHypercyclic commutantes_ES
dc.subject.otherHypercyclic operatores_ES
dc.subject.otherCesàro operatores_ES
dc.titleHypercyclicity for the Elements of the Commutant of an Operatores_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1007/s00020-014-2129-xes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00020-014-2129-x
dc.type.versionacceptedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record