Show simple item record

dc.contributor.authorGómez Pérez, Domingo 
dc.contributor.authorOstafe, Alina
dc.contributor.authorShparlinski, Igor E.
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-01-25T09:02:29Z
dc.date.available2016-01-25T09:02:29Z
dc.date.issued2014
dc.identifier.issn0025-5718
dc.identifier.issn1088-6842
dc.identifier.urihttp://hdl.handle.net/10902/7949
dc.description.abstractABSTRACT: We present several general results that show how algebraic dynamical systems with a slow degree growth and also rational automorphisms can be used to construct stronger pseu-dorandom number generators. We then give several concrete constructions that illustrate the applicability of these general results.es_ES
dc.format.extent20 p.es_ES
dc.language.isoenges_ES
dc.rights© American Mathematical Society First published in Mathematics of Computation in 83(287) 2014, published by the American Mathematical Societyes_ES
dc.sourceMathematics of Computation Volume 83, Issue 287, May 2014, Pages 1535-1550es_ES
dc.subject.otherPolynomial iterationses_ES
dc.subject.otherPseudorandom numberses_ES
dc.titleAlgebraic entropy, automorphisms and sparsity of algebraic dynamical systems and pseudorandom number generatorses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1090/S0025-5718-2013-02780-9
dc.type.versionacceptedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record