Show simple item record

dc.contributor.authorSantos Bregel, Germán 
dc.contributor.authorFernández Olmo, Ignacio 
dc.contributor.authorIrabien Gulías, José Ángel
dc.contributor.authorLedoux, Frédéric
dc.contributor.authorCourcot, Dominique
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2015-11-23T14:01:20Z
dc.date.available2015-11-23T14:01:20Z
dc.date.issued2014-12-15
dc.identifier.issn2283-5954
dc.identifier.otherCTM2010-16068
dc.identifier.urihttp://hdl.handle.net/10902/7726
dc.description.abstractThe aim of this work is to develop statistical estimation models of some EU regulated heavy metal levels (Pb, Ni) and some non-regulated heavy metal levels (Mn, V and Cr) in the ambient air of the city of Dunkerque (Northern France) so that they might be used for air quality assessment as an alternative to experimental measurements, since these levels are relatively low compared to the EU limit/target values and other air quality guidelines. Three different approaches were considered: Partial Least Squares Regression (PLSR), Artificial Neural Networks (ANN) and Principal Component Analysis (PCA) coupled with ANN. External validation results evidence that PLSR and ANN-based statistical models for regulated metals and for Mn and V provide adequate mean values estimations while fulfill the EU uncertainty requirements.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through the Project CTM2010-16068 and the FPI short stay EEBB-I-13-07691.
dc.format.extent6 p.es_ES
dc.language.isoenges_ES
dc.publisherDigilabses_ES
dc.rights© Los autores. The policy of ProScience is to provide full access to the bibliographic contents if a correct citation to the original publication is given (rules as in CC0). Therefore, the authors authorize to i) print the articles; ii) redistribute or republish (e.g., display in repositories, web platforms, etc.) the articles; iii) translate the article; iv) reuse portions of the article (text, data, tables, figures) in other publications (articles, book, etc.).es_ES
dc.sourceProScience, 2014, 1, 100-105es_ES
dc.source1st International Conference on Atmospheric Dust (DUST 2014), Castellaneta Marina, Italyes_ES
dc.subject.otherPartial least squares regression (PLSR)es_ES
dc.subject.otherArtificial neural networks (ANN)es_ES
dc.subject.otherStatistical modelses_ES
dc.subject.otherParticulate matteres_ES
dc.subject.otherPM10es_ES
dc.subject.otherHeavy metalses_ES
dc.titlePLSR and ANN estimation models for PM10-bound heavy metals in Dunkerque (Northern France)es_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.14644/dust.2014.016
dc.type.versionpublishedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record