Impact of a 1755-like tsunami in Huelva, Spain
View/ Open
Full record
Show full item recordAuthor
Lima, V. V.; Miranda, Jorge Miguel; Baptista, María Ana; Catalao, J.; González Rodríguez, Ernesto Mauricio
Date
2010-01Derechos
Atribución 3.0 España
Publicado en
Natural Hazards and Earth System Sciences, Volume 10, Number 1, 2010
Publisher
Copernicus Publications
Abstract:
Abstract. Coastal areas are highly exposed to natural hazards
associated with the sea. In all cases where there is historical
evidence for devastating tsunamis, as is the case of
the southern coasts of the Iberian Peninsula, there is a need
for quantitative hazard tsunami assessment to support spatial
planning. Also, local authorities must be able to act towards
the population protection in a preemptive way, to inform
“what to do” and “where to go” and in an alarm, to make
people aware of the incoming danger. With this in mind, we
investigated the inundation extent, run-up and water depths,
of a 1755-like event on the region of Huelva, located on the
Spanish southwestern coast, one of the regions that was affected
in the past by several high energy events, as proved by
historical documents and sedimentological data. Modelling
was made with a slightly modified version of the COMCOT
(Cornell Multi-grid Coupled Tsunami Model) code. Sensitivity
tests were performed for a single source in order to understand
the relevance and influence of the source parameters
in the inundation extent and the fundamental impact parameters.
We show that a 1755-like event will have a dramatic
impact in a large area close to Huelva inundating an area between
82 and 92 km2 and reaching maximum run-up around
5 m. In this sense our results show that small variations on
the characteristics of the tsunami source are not too significant
for the impact assessment. We show that the maximum
flow depth and the maximum run-up increase with the average
slip on the source, while the strike of the fault is not
a critical factor as Huelva is significantly far away from the
potential sources identified up to now. We also show that
the maximum flow depth within the inundated area is very
dependent on the tidal level, while maximum run-up is less
affected, as a consequence of the complex morphology of the
area.
Collections to which it belong
- D56 Artículos [202]
- D56 Proyectos de Investigación [120]