Show simple item record

dc.contributor.authorAndradas, Carlos
dc.contributor.authorRecio Muñiz, Tomás 
dc.contributor.authorSendra Pons, Juan Rafael
dc.contributor.authorTabera Alonso, Luis Felipe 
dc.contributor.authorVillarino Cabellos, Carlos
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2014-10-22T12:05:11Z
dc.date.available2014-10-22T12:05:11Z
dc.date.issued2014
dc.identifier.issn0938-1279
dc.identifier.issn1432-0622
dc.identifier.otherMTM2011-25816-C02-02
dc.identifier.urihttp://hdl.handle.net/10902/5394
dc.description.abstractLet K⊆R be a computable subfield of the real numbers (for instance, Q). We present an algorithm to decide whether a given parametrization of a rational swung surface, with coefficients in K(i), can be reparametrized over a real (i.e., embedded in R) finite field extension of K. Swung surfaces include, in particular, surfaces of revolution.es_ES
dc.format.extent29 p.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Berlin Heidelberges_ES
dc.rights© Springer Berlin Heidelberg, 2014. The final publication is available at Springer via http://dx.doi.org/10.1007/s00200-014-0215-6es_ES
dc.sourceApplicable Algebra in Engineering, Communication and Computing, Vol. 25, Iss. 1-2 , pp 39-65, (2014)es_ES
dc.subject.otherSwung surfaceses_ES
dc.subject.otherRevolution surfaceses_ES
dc.subject.otherReal and complex surfaceses_ES
dc.subject.otherRational parametrizationes_ES
dc.subject.otherUltraquadricses_ES
dc.titleReparametrizing Swung Surfaces over the Realses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1007/s00200-014-0215-6es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1007/s00200-014-0215-6
dc.type.versionsubmittedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record