• Login
    View Item 
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • View Item
    •   UCrea
    • UCrea Investigación
    • Departamento de Tecnología Electrónica e Ing. Sistemas y Automática (TEISA)
    • D50 Congresos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Discriminación de patologías tumorales en tejidos cancerígenos mediante espectroscopía de imagen

    View/Open
    Discriminación de ... (1.960Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/2450
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    View Usage Statistics
    Google Scholar
    Full record
    Show full item record
    Author
    García Allende, Pilar Beatriz; Conde Portilla, Olga MaríaAutoridad Unican; Krishnaswamy, Venkataramanan; Pogue, Brian William; Albendea Herrera, Paula; López Higuera, José MiguelAutoridad Unican
    Date
    2009-09
    Derechos
    © 2009 URSI España
    Publicado en
    URSI 2009, XXIV Simposium Nacional de la Unión Científica Internacional de Radio, Santander
    Abstract:
    Multi-spectral scatter visualization of tissue ultrastructure in situ can provide a unique tool for guiding surgical tumor resection. The variations in scattering parameters, i.e. scattering power, scattering amplitude and average scattered intensity, across different tissue types has been analyzed. Since scatter changes are subtle, tissue sub-type identification requires multiparametric analysis of optical data to help in tumor delineation. The proposed methodology has been validated on tissue types observed across pancreatic tumor samples that were pathologically classified under three major groups (epithelium, fibrosis and necrosis) with their corresponding subtypes. This methodology combines a statistical pre-processing of the scattering parameters and an ensemble segmentation method. The latter merges the predictions of k-nearest neighbors (kNN) and Artificial Neural Network (ANN) algorithms for tissue type classification. The classification accuracy inside some predefined regions of interest was determined. Results show a strong correlation between the automated and expert-based classifications.
    Collections to which it belong
    • D50 Congresos [429]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contact Us | Send Feedback
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 3.0 España
     

     

    Browse

    All of UCreaCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    About UCrea
    What is UcreaGuide of self-archivingThesis archiveOpen accessCopyright guideInstitutional policy
    Thinks in open
    Piensa en abierto
    Share

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contact Us | Send Feedback
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 3.0 España