Approximation of elliptic control problems in measure spaces with sparse solutions
View/ Open
Identificadores
URI: http://hdl.handle.net/10902/2210DOI: 10.1137/110843216
ISSN: 1095-7138
ISSN: 0363-0129
Full record
Show full item recordDate
2012Derechos
© 2012 Society for Industrial and Applied Mathematics
Publicado en
SIAM Journal on Control and Optimization, 2012, 50(4), 1735–1752
Publisher
Society for Industrial and Applied Mathematics
Palabras clave
Measure controls
Optimal control
Sparsity
Elliptic partial differential equation
Convergence estimates
Boundary control
Abstract:
Optimal control problems in measure spaces governed by elliptic equations are considered for distributed and Neumann boundary control, which are known to promote sparse solutions. Optimality conditions are derived and some of the structural properties of their solutions, in particular sparsity, are discussed. A framework for their approximation is proposed which is efficient for numerical computations and for which we prove convergence and provide error estimates.
Collections to which it belong
- D20 Artículos [391]
- D20 Proyectos de Investigación [258]