• Login
    View Item 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • View Item
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An orthogonally based pivoting transformation of matrices and some applications

    View/Open
    An orthogonally based.pdf (179.0Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/1988
    DOI: 10.1137/S0895479898349720
    ISSN: 1095-7162
    ISSN: 0895-4798
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    View Usage Statistics
    Google Scholar
    Full record
    Show full item record
    Author
    Castillo Ron, EnriqueAutoridad Unican; Cobo Ortega, ÁngelAutoridad Unican; Jubete Portilla, Francisco; Pruneda González, Rosa Eva; Castillo Sánchez, Carmen
    Date
    2001
    Derechos
    © 2000 Society for Industrial and Applied Mathematics
    Publicado en
    SIAM Journal on Matrix Analysis and Applications, 2001, 22(3), 666–681
    Publisher
    Society for Industrial and Applied Mathematics
    Palabras clave
    Compatibility
    Determinant
    Intersection of linear subspaces
    Linear systems of equations
    Rank of a matrix
    Updating inverses
    Abstract:
    In this paper we discuss the power of a pivoting transformation introduced by Castillo, Cobo, Jubete, andPruned a [Orthogonal Sets and Polar Methods in Linear Algebra: Applications to Matrix Calculations, Systems of Equations and Inequalities, and Linear Programming, John Wiley, New York, 1999] andits multiple applications. The meaning of each sequential tableau appearing during the pivoting process is interpreted. It is shown that each tableau of the process corresponds to the inverse of a row modified matrix and contains the generators of the linear subspace orthogonal to a set of vectors andits complement. This transformation, which is basedon the orthogonality concept, allows us to solve many problems of linear algebra, such as calculating the inverse and the determinant of a matrix, updating the inverse or the determinant of a matrix after changing a row (column), determining the rank of a matrix, determining whether or not a set of vectors is linearly independent, obtaining the intersection of two linear subspaces, solving systems of linear equations, etc. When the process is appliedto inverting a matrix andcalculating its determinant, not only is the inverse of the final matrix obtained, but also the inverses and the determinants of all its block main diagonal matrices, all without extra computations.
    Collections to which it belong
    • D20 Artículos [340]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contact Us | Send Feedback
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 3.0 España
     

     

    Browse

    All of UCreaCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    About UCrea
    What is UcreaGuide of self-archivingThesis archiveOpen accessCopyright guideInstitutional policy
    Thinks in open
    Piensa en abierto
    Share

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contact Us | Send Feedback
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 3.0 España