Show simple item record

dc.contributor.authorLapiedra, R.
dc.contributor.authorSantos Corchero, Emilio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2013-02-26T14:12:00Z
dc.date.available2013-02-26T14:12:00Z
dc.date.issued1981-05-15
dc.identifier.issn0556-2821
dc.identifier.issn1089-4918
dc.identifier.urihttp://hdl.handle.net/10902/1773
dc.description.abstractStarting from predictive relativistic mechanics we develop a classical relativistic statistical mechanics. For a system of N particles, the basic distribution function depends, in addition to the 6N coordinates and velocities, on N times, instead of a single one as in the usual statistical mechanics. This generalized distribution function obeys N (instead of 1) continuity equations, which give rise to N Liouville equations in the case of a dilute plasma (i.e., to lowest, nonzero order in the charges). Hence, the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for the reduced generalized distribution functions is derived. A relativistic Vlasov equation is obtained in this way. Thermal equilibrium is then considered for a dilute plasma. The calculation is explicitly worked out for a weakly relativistic plasma, up to order 1/c2, and known results are recovered.es_ES
dc.format.extent8 p.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rights© 1981 The American Physical Societyes_ES
dc.sourcePhysical Review D. Particles and fields, vol. 23, num. 10, p. 2181-2188, (1981)es_ES
dc.titleClassical relativistic statistical mechanics: The case of a hot dilute plasmaes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1103/PhysRevD.23.2181
dc.type.versionpublishedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record