• Login
    View Item 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • View Item
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Artículos
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A paradox in the approximation of Dirichlet control problems in curved domains

    View/Open
    A paradox in the ... (1.322Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/1638
    DOI: 10.1137/100794882
    ISSN: 1095-7138
    ISSN: 0363-0129
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    View Usage Statistics
    Google Scholar
    Full record
    Show full item record
    Author
    Casas Rentería, EduardoAutoridad Unican; Günther, Andreas; Mateos Alberdi, MarianoAutoridad Unican
    Date
    2011
    Derechos
    © 2011 Society for Industrial and Applied Mathematics
    Publicado en
    Siam Journal on Control and Optimization, 2011, 49(5), 1998-2007
    Publisher
    Society for Industrial and Applied Mathematics
    Palabras clave
    Dirichlet control
    Error estimates
    Semilinear elliptic equations
    Finite elements
    Abstract:
    In this paper, we study the approximation of a Dirichlet control problem governed by an elliptic equation defined on a curved domain Ω. To solve this problem numerically, it is usually necessary to approximate Ω by a (typically polygonal) new domain Ωh. The difference between the solutions of both infinite-dimensional control problems, one formulated in Ω and the second in Ωh, was studied in [E. Casas and J. Sokolowski, SIAM J. Control Optim., 48 (2010), pp. 3746–3780], where an error of order O(h) was proved. In [K. Deckelnick, A. G¨unther, and M. Hinze, SIAM J. Control Optim., 48 (2009), pp. 2798–2819], the numerical approximation of the problem defined in Ω was considered. The authors used a finite element method such that Ωh was the polygon formed by the union of all triangles of the mesh of parameter h. They proved an error of order O(h3/2) for the difference between continuous and discrete optimal controls. Here we show that the estimate obtained in [E. Casas and J. Sokolowski, SIAM J. Control Optim., 48 (2010), pp. 3746–3780] cannot be improved, which leads to the paradox that the numerical solution is a better approximation of the optimal control than the exact one obtained just by changing the domain from Ω to Ωh.
    Collections to which it belong
    • D20 Artículos [340]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contact Us | Send Feedback
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 3.0 España
     

     

    Browse

    All of UCreaCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics
    About UCrea
    What is UcreaGuide of self-archivingThesis archiveOpen accessCopyright guideInstitutional policy
    Thinks in open
    Piensa en abierto
    Share

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contact Us | Send Feedback
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 3.0 España