Show simple item record

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorKunisch, Karl
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2019-04-25T09:54:50Z
dc.date.available2019-04-25T09:54:50Z
dc.date.issued2019-04
dc.identifier.issn0363-0129
dc.identifier.issn1095-7138
dc.identifier.otherMTM2014-57531-Pes_ES
dc.identifier.otherMTM2017-83185-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/16179
dc.description.abstractIn this paper, we consider an optimal control problem for the two-dimensional stationary Navier-Stokes system. Looking for sparsity, we take Borel measures as controls. We prove the well-posedness of the control problem and derive necessary and sufficient conditions for local optimality of the controls. Finally, under a second order condition, we prove rates of the optimal states with respect to small perturbations in the data of the control problem.es_ES
dc.description.sponsorshipThe first author was supported by the Spanish Ministerio de Economía, Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P. The second author was supported by the ERC advanced grant 668998 (OCLOC) under the EU’s H2020 research program.es_ES
dc.format.extent27 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© Society for Industrial and Applied Mathematicses_ES
dc.sourceSIAM Journal on Control and Optimization, 2019, 57(2), 1328-1354es_ES
dc.subject.otherNavier-Stokes equationses_ES
dc.subject.otherBorel measureses_ES
dc.subject.otherSparsityes_ES
dc.subject.otherFirst and second order optimality conditionses_ES
dc.subject.otherStabilityes_ES
dc.titleOptimal control of the two-dimensional stationary Naviers-Stokes equations with measure valued controlses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1137/18M1185582
dc.type.versionpublishedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record