Show simple item record

dc.contributor.authorCasas Rentería, Eduardo 
dc.contributor.authorWachsmuth, Daniel
dc.contributor.authorWachsmuth, Gerd
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2018-11-23T08:13:51Z
dc.date.available2018-11-23T08:13:51Z
dc.date.issued2018
dc.identifier.issn0363-0129
dc.identifier.issn1095-7138
dc.identifier.otherMTM2014-57531-Pes_ES
dc.identifier.otherMTM2017-83185-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/15023
dc.description.abstractWe consider bilinear optimal control problems whose objective functionals do not depend on the controls. Hence, bang-bang solutions will appear. We investigate sufficient secondorder conditions for bang-bang controls, which guarantee local quadratic growth of the objective functional in L1 . In addition, we prove that for controls that are not bang-bang, no such growth can be expected. Finally, we study the finite-element discretization and prove error estimates of bang-bang controls in L1 -norms.es_ES
dc.description.sponsorshipThe first author was partially supported by the Spanish Ministerio de Economía Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P. The second author was partially supported by DFG under grant Wa 3626/1-1.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherSociety for Industrial and Applied Mathematicses_ES
dc.rights© Society for Industrial and Applied Mathematicses_ES
dc.sourceSIAM Journal on Control and Optimization, 2018, 56(6), 4203-4227es_ES
dc.subject.otherBang-bang controles_ES
dc.subject.otherBilinear controlses_ES
dc.subject.otherSecond-order conditionses_ES
dc.subject.otherSufficient optimality conditionses_ES
dc.subject.otherError analysises_ES
dc.titleSecond-order analysis and numerical approximation for bang-bang bilinear control problemses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1137/17M1139953
dc.type.versionpublishedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record