Show simple item record

dc.contributor.authorAde, P. A. R.es_ES
dc.contributor.authorBarreiro Vilas, Rita Belén es_ES
dc.contributor.authorCurto Martín, Andréses_ES
dc.contributor.authorDiego Rodríguez, José Maríaes_ES
dc.contributor.authorGonzález-Nuevo González, Joaquínes_ES
dc.contributor.authorHerranz Muñoz, Diego es_ES
dc.contributor.authorLópez-Caniego Alcarria, Marcoses_ES
dc.contributor.authorMartínez González, Enriquees_ES
dc.contributor.authorVielva Martínez, Patricio es_ES
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-04-28T11:49:11Z
dc.date.available2017-04-28T11:49:11Z
dc.date.issued2014-11es_ES
dc.identifier.issn0004-6361es_ES
dc.identifier.issn1432-0746es_ES
dc.identifier.urihttp://hdl.handle.net/10902/10891
dc.description.abstractThis paper describes the methods used to produce photometrically calibrated maps from the Planck High Frequency Instrument (HFI) cleaned, time-ordered information. HFI observes the sky over a broad range of frequencies, from 100 to 857??GHz. To obtain the best calibration accuracy over such a large range, two different photometric calibration schemes have to be used. The 545 and 857?GHz data are calibrated by comparing flux-density measurements of Uranus and Neptune with models of their atmospheric emission. The lower frequencies (below 353??GHz) are calibrated using the solar dipole. A component of this anisotropy is time-variable, owing to the orbital motion of the satellite in the solar system. Photometric calibration is thus tightly linked to mapmaking, which also addresses low-frequency noise removal. By comparing observations taken more than one year apart in the same configuration, we have identified apparent gain variations with time. These variations are induced by non-linearities in the read-out electronics chain. We have developed an effective correction to limit their effect on calibration. We present several methods to estimate the precision of the photometric calibration. We distinguish relative uncertainties (between detectors, or between frequencies) and absolute uncertainties. Absolute uncertainties lie in the range from 0.54% to 10% from 100 to 857??GHz. We describe the pipeline used to produce the maps from the HFI timelines, based on the photometric calibration parameters, and the scheme used to set the zero level of the maps a posteriori. We also discuss the cross-calibration between HFI and the SPIRE instrument on board Herschel. Finally we summarize the basic characteristics of the set of HFI maps included in the 2013 Planck data release.es_ES
dc.format.extent25 p.es_ES
dc.language.isoenges_ES
dc.publisherEDP Scienceses_ES
dc.rights© ESO, 2014es_ES
dc.sourceA&A 571, A8 (2014)es_ES
dc.titlePlanck 2013 results. VIII. HFI photometric calibration and mapmakinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1051/0004-6361/201321538es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1051/0004-6361/201321538es_ES
dc.type.versionpublishedVersiones_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record