Proyecto Fin de Carrera

CÁLCULO DEL SERVICIO DE COMBUSTIBLE DE LA PLANTA PROPULSORA Y GENERADORA DE UN BUQUE FERRY

(Technical Study of the Fuel Oil Propulsion and Power Plant Service of a Ferry)

Para acceder al Título de

INGENIERO TÉCNICO NAVAL. ESPECIALIDAD EN PROPULSIÓN Y SERVICIOS DEL BUQUE

Dean Díaz Andric

Marzo-2015
ÍNDICE

1. Memoria.................................................................................................................. 6
   1.1. Título........................................................................................................... 6
   1.2. Destinatario.................................................................................................. 6
   1.3. Objeto del proyecto o planteamiento del problema................................. 6
   1.4. Combustibles............................................................................................... 7
       1.4.1. Propiedades del fluido........................................................................... 11
   1.5. Sistema de combustible.............................................................................. 12
   1.6. Módulo de combustible................................................................................ 19
       1.6.1. Filtro doble FIL1 .............................................................................. 22
       1.6.2. Bombas de alimentación SP1/2 ......................................................... 23
       1.6.3. Válvula limitadora de presión PCV1.................................................. 27
       1.6.4. Filtro automático AF1 .......................................................................... 27
       1.6.5. Medidor de flujo FLOW1 .................................................................... 30
       1.6.6. Tanque de mezcla T1 ........................................................................... 31
       1.6.7. Bombas de circulación BP1/2 .............................................................. 31
       1.6.8. Bombas de circulación BP3/4 .............................................................. 34
       1.6.9. Calentadores de vapor H1/H2 ............................................................. 35
       1.6.10. Calentadores eléctricos H3/H4 ......................................................... 35
       1.6.11. Viscosímetro VA1/VA2 ..................................................................... 36
       1.6.12. Tanques de compensación T2/T3 ...................................................... 38
   1.7. Motores principales....................................................................................... 39
       1.7.1. Resumen............................................................................................ 49
   1.8. Motores auxiliares........................................................................................ 50
       1.8.1. Resumen............................................................................................ 61
ÍNDICE

1.9. Tubería ........................................................................................... 61
1.10. Bombas de tornillo................................................................. 67
1.11. Flujo en tuberías................................................................. 70
  1.11.1. Pérdidas lineales ......................................................... 75
  1.11.2. Pérdidas singulares ..................................................... 79
2. Diseño y cálculos........................................................................... 87
  2.1. Navegación normal ............................................................ 92
  2.2. Maniobra ............................................................................ 93
  2.3. Estudio del Modo Maniobra .............................................. 97
    2.3.1. Módulo de combustible ............................................. 98
    2.3.2. Circuito de MMPP ..................................................... 105
    2.3.3. Circuito de MMAA .................................................. 113
  2.4. Circuito de alimentación del motor principal de babor ......... 118
  2.5. Circuito de alimentación del motor principal de estribor ....... 126
  2.6. Circuito de alimentación de motores auxiliares ................. 131
3. Pliego de condiciones .................................................................. 147
  3.1. Requerimientos de la especificación técnica ...................... 147
  3.2. Requerimientos de la Sociedad de Clasificación ................. 150
4. Planos .......................................................................................... 153
5. Presupuesto ................................................................................ 155
  5.1. Presupuesto desglosado en partidas .................................. 155
  5.2. Balance final del presupuesto ........................................... 158
6. Bibliografía ................................................................................ 166
  6.1. Libros ................................................................................. 166
  6.2. Páginas Web ........................................................................ 166
  6.3. Normativa ........................................................................... 166
<table>
<thead>
<tr>
<th>PROYECTO FIN DE CARRERA</th>
<th>DEAN DIAZ ANDRIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGENIERO TÉCNICO NAVAL</td>
<td>FECHA: 27/02/2015</td>
</tr>
<tr>
<td>ÍNDICE</td>
<td>PAG: 4</td>
</tr>
</tbody>
</table>
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA
UNIVERSIDAD DE CANTABRIA

MEMORIA
1. **MEMORIA**

1.1. **Título**

Cálculo del servicio de combustible de la planta propulsora y generadora de un buque ferry.

1.2. **DESTINATARIO**

El destinatario del presente Proyecto es la Escuela Técnica Superior de Náutica de la Universidad de Cantabria, donde se presentará como Proyecto Fin de Carrera al objeto de obtener el título de Ingeniero Técnico Naval especialidad Propulsión y Servicios del Buque.

1.3. **OBJETO DEL PROYECTO O PLANTEAMIENTO DEL PROBLEMA**

En este trabajo se realizará el estudio del diseño y cálculo de combustible de la instalación propulsora y generadora de un buque de pasaje equipado con dos motores principales MaK M43C, cada uno de los cuales acciona una línea de ejes. Dispone además de tres motores auxiliares MaK M20.

En el desarrollo de trabajo se tratará primero de los combustibles utilizados a bordo, se describirá el sistema de combustible utilizado en el buque, se describirán las características necesarias de los motores principales y auxiliares con objeto de posteriormente realizar los cálculos necesarios para diseñar la instalación.

Posteriormente se creará un diseño tridimensional de la sala de máquinas del buque en el que se situarán los equipos afectados por el estudio, motores principales, motores auxiliares y los equipos de tratamiento de combustible.

Partiendo de las características técnicas exigidas por el armador al construir el buque se monta la planta tanto propulsora como generadora eléctrica. El armador se decantó en el momento de la construcción por un fabricante de motores determinado.
El fabricante de los motores propulsores y los motores auxiliares define las particularidades de la instalación de todos los componentes que dan servicio a estos motores. En el caso particular del suministro de combustible, especifica caudales, presiones e incluso disposiciones de elementos del circuito de combustible.

Partiendo de las instrucciones que el fabricante incluye en la guía de proyecto de los motores, de las normas de la Sociedad de Clasificación y legislación internacional, se elaboran los planos P&ID de los sistemas de alimentación de combustible.

Si bien estos esquemas incluyen servicios a diferentes elementos y comunicaciones con otros servicios, este estudio se centra en el suministro de combustible a motores principales y motores auxiliares

Los diagramas P&ID junto con la geometría del barco permiten realizar un diseño tridimensional en el que se disponen todos los motores, como consumidores, y los sistemas de tratamiento y suministro de combustible, con su emplazamiento final.

Del modelo en tres dimensiones, considerando cada línea de alimentación por separado, se crean las isométricas de las tuberías. Partiendo de ellas, de la trayectoria de la tubería, de los elementos y accesorios que hay montados en las líneas se realiza un cálculo de pérdida de carga en cada línea de alimentación.

**1.4. COMBUSTIBLES**

Desde comienzos del siglo XIX hasta mediados del siglo XX los barcos de vapor fueron eliminando progresivamente la navegación a vela.

A partir de la mitad del siglo XX los barcos propulsados con motor comenzaron su dominio. En 1892 comienza la historia del motor diésel, y veinte años después aparecería el primer motor diésel marino.

El periodo entre guerras mundiales impulsa el crecimiento de la flota de buques con motor.
Posteriormente, una serie de innovaciones en el diseño de los motores y la aparición de aceites de alta alcalinidad, capaces de neutralizar la acidez producida en la combustión de combustibles de alto contenido de azufre y el disminuir el desgaste producido por estos combustibles residuales hasta niveles equiparables a los producidos por combustibles ligeros hizo posible el comienzo de la aplicación de estos combustibles residuales.

La evolución posterior de estos motores en origen marinos, llevó a su utilización en plantas en instalaciones terrestres.

El gasto en combustible es actualmente el principal factor económico en la explotación de un barco. Hecho que lleva a utilizar cada vez combustibles de peor calidad en busca del abaratamiento del proceso de refino. Estos combustibles residuales pesados presentan varios inconvenientes para su utilización:

- Almacenaje y preparación.
- Calidad de combustión.
- Daños en los componentes de motores debido a corrosiones, erosiones, etc.

Únicamente trataremos las características como fluido de los diferentes tipos de combustible obtenidos en los distintos procesos de destilación, sin entrar en las propiedades mecánicas ni químicas del producto.

Los procesos de refino, que constan de múltiples operaciones son los que dan lugar a los diferentes tipos de producto.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Density at 15 °C</td>
<td>kg/m³</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>45</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Limit</td>
<td>max</td>
<td>950 2)</td>
<td>975 3)</td>
<td>980 4)</td>
<td>991</td>
<td>991</td>
<td>991</td>
<td>1010</td>
<td>1010</td>
<td>991</td>
<td>1010</td>
<td>991</td>
<td>1010</td>
</tr>
<tr>
<td>Kin. viscosity at 100 °C</td>
<td>cSt 1)</td>
<td>min</td>
<td>6 5)</td>
<td>15 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash point</td>
<td>°C</td>
<td>min</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pour point (winter) (summer)</td>
<td>°C</td>
<td>max</td>
<td>0 6)</td>
<td>24</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon Residue (Conradson)</td>
<td>% (m/m)</td>
<td>max</td>
<td>12 6)</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>% (m/m)</td>
<td>max</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total sedim, after ageing</td>
<td>% (m/m)</td>
<td>max</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>% (V/V)</td>
<td>max</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td>% (m/m)</td>
<td>max</td>
<td>3.5</td>
<td>4.0</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>mg/kg</td>
<td>max</td>
<td>150</td>
<td>300</td>
<td>350</td>
<td>200</td>
<td>500</td>
<td>300</td>
<td>600</td>
<td>600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium + Silicon</td>
<td>mg/kg</td>
<td>max</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>mg/kg</td>
<td>max</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphor</td>
<td>mg/kg</td>
<td>max</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>mg/kg</td>
<td>max</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) cSt: Centistoke
2) Data from the manufacturer
3) Data from the supplier
4) Data provided by the manufacturer
5) Data provided by the supplier
6) Data provided by the supplier
7) Data provided by the supplier
Las figuras 1 y 2 muestran los tipos de combustible, los llamados combustibles residuales primero y ligeros después.

En un primer proceso de destilación atmosférica se obtiene el diésel ligero y gasolinas.

Y por otra parte los productos residuales.

Dentro de los residuales, por medio de diferentes tratamientos, aparece el llamado Marine Gasoil (MGO/DMA), que surge como mezcla del destilado puro y de producto residual. Este producto tendrá una densidad próxima a 860 kg/m$^3$ a 15°C, mayor contenido en azufres y mayor viscosidad.

El producto pesado, mezcla de combustible residual y producto de destilado pesado y ligero da como resultado los fuel oil IFO. Presentan estos mayores contenidos en azufre, asfaltenos y metales. En el caso del estudio, el producto utilizado será un combustible IFO 380 (RMG380), que en la tabla tiene una viscosidad de 991 kg/m$^3$.

Estas tablas contienen los valores normalizados según la norma ISO 8217-2010.
1.4.1. Propiedades del fluido

Viscosidad es una medida de la flúidez de un producto a una determinada temperatura. Expresa la facilidad que tiene un fluido para fluir cuando se le aplica una fuerza externa. Esta viscosidad disminuye con el aumento de temperatura.

La unidad de viscosidad absoluta en el sistema internacional es el Pa.s y se simboliza con \( \mu \).

\[
1 \text{Pa.s} = 1 \frac{N\cdot s}{m^2} = 1 \frac{kg}{m\cdot s}
\]

El cociente entre la viscosidad absoluta y la densidad se denomina viscosidad cinemática y su unidad en el sistema internacional es el m\(^2\)/s.

La unidad en el sistema CGS en el Stoke (St) y su submúltiplo más utilizado el centistoke cSt. Se simboliza con \( \nu \).

\[
\nu = \frac{\mu}{\rho} \quad 1 \text{m}^2/\text{s} = 10^6 \text{cSt}
\]

La densidad de una sustancia es su masa por unidad de volumen, simbolizado con la letra \( \rho \). Y con unidades en el sistema internacional de kg/m\(^3\).

Es importante tener en cuenta la densidad para la depuración del combustible. Con densidades mayores de 0,991 se complica la separación del agua.

Estas características hacen necesario un tratamiento del combustible antes de su consumo.

En el momento de la inyección el combustible tiene que tener la viscosidad que recomienda el fabricante del motor para conseguir un pulverizado correcto. Para llegar al punto de viscosidad deseado se calienta el combustible en los módulos de tratamiento. Caterpillar indica en los manuales tanto de los motores de propulsión como en los motores de los grupos generadores una viscosidad máxima de 12 cSt.
En este estudio se considerará que el combustible se mantiene con una viscosidad entre 11 y 12 cSt y que no hay variación de temperatura a lo largo de la tubería.

1.5. SISTEMA DE COMBUSTIBLE

En general el sistema de combustible se puede dividir en el sistema de trasiego y purificación de combustible, y el sistema de alimentación. Este último, que es en el que se va a centrar este estudio se puede dividir en cuatro grupos, siendo la alimentación de motores principales y motores auxiliares el objeto de estudio. Los otros dos se refieren a la alimentación de combustible de la caldera de vapor y a la alimentación del grupo generador de emergencia.

La alimentación de combustible de motores principales se realiza a través de los módulos de combustible, pero la especificación técnica incluye un servicio paralelo de combustible ligero que puede alimentar todos motores, tanto principales como auxiliares.

El buque dispone de 4 tanques de almacenamiento de combustible pesado, dos de 118 m$^3$ y dos de 143 m$^3$ de volumen neto situados simétricamente a babor y estribor, como se ven marcados en las figuras 3 y 4, nombrados F19 y F20. Hay un tanque almacén para diésel situado sólo en la parte de estribor, con capacidad para 94,3 m$^3$, también representado en las figuras 3 y 4 como D27E.
La siguiente figura muestra la disposición de los tanques de uso diario. A babor está el tanque de decantación de fuel oil con un volumen neto de 115,8 m$^3$ y dos tanques de uso diario de fuel con capacidades de 28,8 m$^3$ cada uno. En el lado de estribor se encuentran dos tanques de uso diario de gasoil de 12 m$^3$ cada uno. La figura 5 muestra esta disposición.
La imagen de la figura 6 representa la situación de todos estos tanques de combustible y la de los motores principales y auxiliares, así como la de los módulos de combustible, que también aparecen sombreados.

El modelo en 3D permitirá calcular con precisión la longitud de tubería a emplear entre todos estos equipos.

El servicio de trasiego de combustible está compuesto por dos bombas iguales, una para servicio de HFO y otra para diésel, conectadas de forma que una pueda funcionar de reserva de la otra. La bomba de trasiego de HFO permite aspirar de cada uno de los tanques almacén, del tanque de reboses y de los tanques de sedimentación y diarios, y descargar a alguno de estos tanques pero no a los diarios, cuyo llenado se tiene que hacer por medio de las purificadoras.

La bomba de trasiego de diésel aspira del tanque almacén de diésel y del tanque de reboses de diésel oil y descarga a los tanques de uso diario. También existe un sistema paralelo de llenado mediante purificadora.

Mediante la bomba de trasiego de fuel se llena el tanque de decantación del que posteriormente aspira la depuradora para llenar el tanque de uso diario.
Fig. 6
En la figura 7 se muestra un esquema resumido del sistema de trasiego, donde aparecen los elementos fundamentales explicados anteriormente.

El sistema de alimentación parte de los tanques de consumo diario, de donde aspiran los módulos de combustible, la bomba diésel de emergencia y las bombas de alimentación de caldera que no es objeto de estudio.

Fig. 7

Todos los tanques están dotados de un sistema de calentamiento. Los tanques almacén para poder mantener una viscosidad del combustible que permita bombearlo y en el tanque de sedimentación la temperatura facilita la separación.

El tanque diario tiene que mantener una temperatura adecuada antes de entrar en el módulo de combustible.
A partir de los tanques de uso diario consideramos el sistema de alimentación.

La alimentación de combustible se realiza por medio de dos unidades de alimentación de tipo presurizado que admite combustible de 380 cSt a 50°C. Estas unidades de alimentación admiten combustible y lo tratan para adecuarlo a los requisitos de los consumidores, motores propulsores y motores auxiliares.

Solamente pueden operar con un tipo de combustible de modo que el tipo que admite es el que suministran, tanto a los auxiliares como a los principales.

Los motores auxiliares disponen de unos tanques de gravedad, de capacidad aproximada de 40-50 litros para disponer de combustible en caso de arranque automático de algún motor o como reserva en caso de un problema en la planta eléctrica.

Se incluye en la figura 8 un esquema de líneas del sistema de combustible sin los nombres de las líneas ni accesorios para no saturar la imagen, pero en el que se incluyen todos los circuitos que afectan al estudio, tanto la alimentación de motores principales como auxiliares.

En el apartado Planos el plano PL 002 se muestra el diagrama completo de líneas de combustible.

Se observa que hay un circuito que alimenta a partir de cada módulo a un motor principal y la línea de alimentación a motores se une a la salida de cada módulo.

En la práctica la alimentación se realiza suministrando combustible a cada motor principal desde un módulo de combustible y solamente un módulo alimenta por medio de sus bombas de circulación a todos los motores auxiliares.
Fig. 8
1.6. MÓDULO DE COMBUSTIBLE

El módulo de suministro de combustible es el encargado de proporcionar combustible pesado (HFO) o ligero (DO) a los motores, tanto motores principales como motores auxiliares. Este módulo está fabricado por mas-wismar y es suministrado por Caterpillar en conjunto con los motores.

Existen dos módulos de combustible, que suministran solamente un producto, bien HFO o bien DO.

Estos módulos regulan los valores de presión y viscosidad del combustible suministrado para motores principales y motores auxiliares de forma independiente.

![Fig. 9](image)

El siguiente diagrama de la figura 10 resume de forma muy esquemática los principales componentes del módulo de suministro de combustible. Sólo están incluidos los elementos más relevantes, omitiéndose válvulas e instrumentación para mayor claridad del dibujo.

Los puntos 1 y 2 indican la entrada de combustible al módulo, siendo 1 la alimentación de combustible pesado y el punto 2 para el combustible ligero. En ambos casos el combustible llega directamente de los tanques de uso diario.
Fig. 10

Los puntos 3.1 y 3.2 indican la salida de combustible para alimentación de motores principales y motores auxiliares respectivamente.

El punto 4 es el retorno de combustible al módulo, por donde retorna. El combustible de los consumidores que esté alimentando ese módulo.

El elemento señalado como COV1 es una válvula de tres vías que realiza la selección de combustible de entrada al módulo. Lleva un sensor de posición para activar el retorno de combustible por el enfriador de tubos en el caso de que es combustible admitido sea gasoil.

El elemento FIL1 es un filtro doble con malla de filtrado de 540 micras.

Los elementos SP1/2 son las bombas de alimentación de combustible. Estas bombas suministran un caudal que cubre el 160% del consumo máximo de los motores.
PCV1 es la válvula reguladora de presión que controla la presión de descarga de estas bombas en un rango ajustable entre 0,2 y 0,5 MPa, de modo que recircula a la aspiración el exceso de combustible.

El componente AF1 es un filtro de limpieza automática y continua, sin interrupción del flujo y con elementos de filtrado de 10µm abs.

T1 es un tanque de mezcla, al que retorna el combustible no consumido a través de la línea de retorno. Este tanque está dimensionado con la capacidad suficiente para absorber los cambios de consumo y de temperatura que puedan darse debido a cambios en el régimen o carga de los motores.

Las bombas BP1/2 y BP3/4 son bombas de circulación, que impulsan el combustible a través de los calentadores H1/2 y H3/4 respectivamente, cada cual correspondiente a motores principales y motores auxiliares. Estas bombas están diseñadas para un caudal que cubre el 100% del consumo de motores principales y motores auxiliares.

Todas las bombas del módulo de combustible, tanto las de alimentación como las de circulación son bombas de desplazamiento positivo de rotor helicoidal.

Los calentadores H1/2 son intercambiadores en los que el calentamiento se produce con vapor. Los calentadores H3/4, para motores auxiliares son calentadores eléctricos. Estos calentadores llevan un grupo de válvulas que permite el funcionamiento de los calentadores tanto en serie, como en paralelo o manteniendo uno de ellos aislado, dado que la capacidad de calentamiento de uno de ellos es suficiente para el funcionamiento del sistema de combustible.

A la salida de cada grupo de calentadores se encuentran instalados los viscosímetros VA1/2. VA1 mide la viscosidad del combustible suministrado a los motores principales y realiza el ajuste de viscosidad actuando sobre la válvula de regulación de vapor de los calentadores H1/2. EL viscosímetro VA2 mantiene la viscosidad del combustible destinado a los motores
auxiliares actuando sobre un grupo de resistencias eléctricas en los calentadores H3/4.

Los elementos T2 y T3 son tanques de compensación para evitar picos de presión y para compensar las variaciones bruscas de consumo.

COV3 es una válvula de 3 vías situada en la línea de retorno de combustible y que según el modo de funcionamiento del módulo, bien en HFO o bien en diésel, conduce el combustible directamente al tanque de mezcla T1 o a través del enfriador de gasoil C1 en caso de estar utilizando este último combustible.

A continuación se estudiarán estos elementos por separado.

Válvula de selección de combustible COV1

Es una válvula de bola para montaje entre bridas de DN50. La posición de trabajo de estas válvulas es totalmente abierta o totalmente cerrada, no siendo aptas para la estrangulación de fluidos.

Para la pérdida de carga en esta válvula se empleará un factor genérico para este tipo de válvulas.

1.6.1. FILTRO DOBLE FIL1

Es un filtro doble montado en la aspiración del módulo y sirve como protección para las bombas, válvulas e instrumentación del módulo, evitando la acumulación de suciedad y fangos en estos elementos.

Es un filtro doble para permitir el cambio de elemento filtrante sin interrupción del servicio. La malla de filtrado es de 540µm.
La conexión es para tubería de DN50.

1.6.2. BOMBAS DE ALIMENTACIÓN SP1/2

Estas bombas son bombas de tornillo. Son bombas de la serie ACG del fabricante IMO Pumps, tipo ACG 045 K7, conectadas a motores eléctricos de 1415 rpm.

La máxima presión de descarga varía en función de la viscosidad según la siguiente tabla suministrada por el fabricante.

<table>
<thead>
<tr>
<th>Viscosidad (cSt)</th>
<th>2</th>
<th>7</th>
<th>12</th>
<th>20</th>
<th>30</th>
<th>37</th>
<th>≥37</th>
</tr>
</thead>
</table>

Fig. 11

Fig. 12
Estas bombas van equipadas con una válvula de regulación de presión interna que recircula el combustible limitando la diferencia de presión en caso de sufrir un bloqueo en la descarga.

Los datos que suministra en su catálogo el fabricante IMO para el cálculo del desplazamiento por revolución de la bomba se pueden obtener de la siguiente tabla.

<table>
<thead>
<tr>
<th>Pres. diferencial (bar)</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>16</th>
<th>16</th>
</tr>
</thead>
</table>

Tabla 1

Siendo la bomba SP1/2 el tamaño 045K y las unidades cm³ por revolución obtenemos

65 cm³/rev * 1415 rpm = 91975 cm³/min 5,5 m³/h

Pero del propio catálogo nos da el caudal efectivo teniendo en cuenta las pérdidas.

<table>
<thead>
<tr>
<th>Visc.</th>
<th>Size &amp; Lead</th>
<th>Speed: 1450 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Visc. (cSt)</td>
<td>Qₑff (lit/min)</td>
</tr>
<tr>
<td></td>
<td>Diff. pressure (bar)</td>
<td>Diff. pressure (bar)</td>
</tr>
<tr>
<td>045K</td>
<td>20</td>
<td>78 71 65</td>
</tr>
<tr>
<td></td>
<td>37</td>
<td>82 77 73</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>86 82 79</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>91 89 88</td>
</tr>
</tbody>
</table>

Tabla 2

Para el caso de las bombas de alimentación, con una presión de trabajo diferencial de 4 bar y una viscosidad obtenida del diagrama Viscosidad/temperatura por la temperatura de los tanques de uso diario, mantenida
entorno a los 80ºC tenemos una viscosidad aproximada de 75 cSt, en la figura 13.

De la tabla 2 con los datos obtenidos y una presión de trabajo de 0,4MPa diferencial vemos un caudal efectivo de 86 l/min

\[
86 \text{ l/min} \rightarrow 5,1 \text{m}^3/\text{h}
\]

Con una presión de descarga de 0,5MPa.
Fig. 13

1.6.3. VÁLVULA LIMITADORA DE PRESIÓN PCV1

Se trata de una válvula limitadora de presión en el circuito montada en la descarga de las bombas de alimentación. De este modo el exceso de combustible es recirculado de nuevo a la aspiración de las bombas de alimentación.

Fig. 14

Un muelle mantiene cerrada la zona de presión P hasta llegar al valor tarado de regulación. Cuando se alcanza el valor fijado la válvula abre conectando P y la zona de baja presión T. Cuando la presión en P desciende la válvula vuelve a cerrar.

Según el fabricante, Kracht, para el tamaño instalado, DN40, el caudal máximo que admite esta válvula es 450 l/min.

1.6.4. FILTRO AUTOMÁTICO AF1

Es un filtro automático de limpieza por retroceso mediante aire comprimido. Los elementos filtrantes se limpian de forma que no se interrumpe el proceso.
El filtro dispone de varias cámaras de filtrado y en cada cámara hay un elemento de filtro. Durante el proceso las cámaras van pasando por la fase de filtrado y por la de limpieza en una secuencia.

La figura 15 muestra una vista externa del filtro.

![Fig. 15](image_url)

Para el tamaño de la instalación el filtro utilizado lleva un total de cuatro cámaras, tres en funcionamiento y una siempre limpia, con un total de 32 elementos filtrantes. La superficie total de filtrado que da el fabricante Boll & Kirch es 8832 cm².

La siguiente figura muestra el proceso de filtrado y limpieza.
En la fase de filtrado el combustible entra por el punto 1 y pasa a las cámaras de filtrado individuales, señaladas como punto 2. El fluido pasa, en cada elemento de filtro de la parte exterior a la interior saliendo por el punto 4. El tamaño de malla de este filtro determina la calidad del filtrado. En el caso del módulo de combustible suministrado es de 10µm abs.

El combustible limpio sale por el punto 6 de la figura.

El elemento 7 es el dispositivo selector de cámara de filtrado. Mediante el giro de este mecanismo se comunican o aíslan las cámaras con la parte de presión del fluido.

El proceso de limpieza se realiza con aire comprimido acumulado en el depósito 12 que se inyecta en la cámara que se encuentra aislada. Este aire impulsa contra el elemento filtrante una pequeña cantidad de combustible limpio en sentido contrario al flujo normal produciendo el arrastre de suciedad. La descarga se produce por el punto 10.
1.6.5. MEDIDOR DE FLUJO FLOW1

Incrustado en el circuito está también un medidor de flujo. Es un contador de tipo mecánico cuyo funcionamiento no se ve alterado por la viscosidad del fluido. Está montado en la zona de descarga de las bombas de alimentación, tras el filtro automático.

El elemento incluido en el módulo de combustible, puede manejar caudales máximos de 9000l/h siendo en funcionamiento nominal 6000l/h para el modelo seleccionado de DN40.

Anteriormente habíamos visto que el caudal máximo de las bombas de circulación es de 5,1 m$^3$/h.

El principio de trabajo es mediante un pistón rotativo. Este método propicia altos rangos de medida, con alta precisión y es un diseño adecuado para líquidos de alta viscosidad.

El pistón rotativo y una paleta móvil accionan el contador mediante un acoplamiento magnético, de forma que el líquido no está en contacto con el elemento contador.

Son los elementos indicados 1 y 2 en la figura 18.
1.6.6. TANQUE DE MEZCLA T1

El combustible no consumido retorna a este tanque, donde se mezcla con el combustible procedente del tanque diario. Este combustible no consumido previamente ha sido calentado para alcanzar el punto de viscosidad adecuado por lo que retorna con cierta temperatura. La temperatura máxima que se considera en este tanque es de 121°C. La capacidad del tanque es de 99 litros.

1.6.7. BOMBAS DE CIRCULACIÓN BP1/2

Estas también son bombas de rotor helicoidal tipo ACG 045 K7, al igual que las bombas de alimentación, pero con una velocidad de giro diferente. En este caso 2870 rpm.

Alimentan los motores principales a través de los calentadores H1/2.
Trabajan con una presión de aspiración positiva, dada por la descarga de las bombas de alimentación, siendo aproximadamente 0,4MPa. Y la presión diferencial de trabajo se encuentra entre 0,2 y 0,4 MPa.

Para el caso de las bombas BP1/2, girando a 2870 rpm el fabricante suministra la siguiente tabla para la obtención del caudal.
Tabla 3

Para una presión de trabajo diferencial de 0,4 MPa en la descarga, con una viscosidad calculada en función de la temperatura del tanque T1, en torno a 110ºC-120ºC, en la fig. siguiente.
Fig. 19
De la tabla 3 obtenemos un caudal mínimo de las bombas de circulación BP1/2 de 175 l/min.

\[ 175 \text{ l/min} \rightarrow 0,5 \text{ m}^3/\text{h} \text{ de caudal efectivo considerando las pérdidas.} \]

Con una presión final de descarga entre de aproximadamente 0,9 MPa

1.6.8. BOMBAS DE CIRCULACIÓN BP3/4

Son las bombas de circulación para alimentación de motores auxiliares. Suministradas por el mismo fabricante, IMO Pumps, son de tipo ACE 032 L3.

Al igual que las bombas ACG llevan una válvula de regulación de presión interna para protección de la bomba y regulación de la presión de descarga.

Están conectadas a motores eléctricos que giran a 2870 rpm.

Siguiendo la tabla 4, suministrada por IMO Pumps para este tipo de bomba con este motor eléctrico podremos obtener el caudal circulado.

<table>
<thead>
<tr>
<th>rpm</th>
<th>032L</th>
<th>032N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l/min</td>
<td>l/min</td>
</tr>
<tr>
<td>1470</td>
<td>22,8</td>
<td>35,9</td>
</tr>
<tr>
<td>1770</td>
<td>29,0</td>
<td>44,6</td>
</tr>
<tr>
<td>2950</td>
<td>53,3</td>
<td>79,0</td>
</tr>
<tr>
<td>3550</td>
<td>65,6</td>
<td>96,4</td>
</tr>
</tbody>
</table>

Tabla 4

Para 2900 rpm \[ 53 \text{ l/min} \rightarrow 3,2 \text{ m}^3/\text{h} \text{ para las bombas de circulación de motores auxiliares.} \]
Con una presión final en la descarga de 0,9 MPa.

1.6.9. **CALENTADORES DE VAPOR H1/H2**

Son intercambiadores de calor de tipo tubo y envuelta con tubos en U, en los que el calentamiento se produce por circulación de vapor.

![Fig 21](image)

Para los efectos de pérdida de carga dentro del calentador lo consideraremos como un depósito, con entrada y salida de depósito y contracción de la vena de fluido. Aunque estos efectos se pueden despreciar con los bordes de entrada redondeados.

El combustible sale de los calentadores con la viscosidad óptima de inyección, que con el valor indicado de 11 cSt equivale para el combustible utilizado a unos 144ºC-146ºC.

Con lo que la variación de temperatura, según la indicación del fabricante está entre 120ºc y 146ºC.

1.6.10. **CALENTADORES ELÉCTRICOS H3/H4**

Son intercambiadores de envuelta con resistencias eléctricas de cinco etapas.
Del mismo modo que con los calentadores de vapor H1/2, tomaremos las pérdidas de carga como las correspondientes a las pérdidas en entradas, aunque también, como se menciona para los calentadores H1/2, se podrían despreciar.

Igualmente tienen que calentar el combustible hasta unos 144ºC-146ºC. Con una variación de temperatura similar a la de los calentadores H1/H2

1.6.11. Viscosímetro VA1/VA2

Es un medidor de viscosidad dinámica por medio de un elemento capilar, para fluidos Newtonianos. El elemento capilar está montado con una bomba de engranajes en un armazón. Un motor eléctrico mueve mediante un acoplamiento magnético la bomba de engranajes para que circule continuamente fluido a través del tubo capilar.

El flujo laminar a través del elemento capilar, señalado en la figura 23 con el punto 1, crea una diferencia de presión que es proporcional a la viscosidad dinámica del combustible.
El transmisor de presión diferencial convierte la diferencia de presión en una señal eléctrica que da la indicación de viscosidad. En función de este valor y del valor de consigna indicado, se actúa sobre una válvula reguladora de vapor en el caso de los motores principales y sobre un grupo de resistencias eléctricas en el caso de los motores auxiliares.

La figura siguiente muestra la disposición para el caso de calentador con vapor

Para el caso de pérdida de carga en el viscosímetro, al tratarse de elementos que implican el giro bruto del fluido y tubos capilares se tomará y factor de pérdidas bastante desfavorable, con un k en torno a 3.
1.6.12. **Tanques de Compensación T2/T3**

Son los últimos elementos que se encuentran aguas abajo en los módulos de combustible.

Su única función es la de ofrecer un depósito para amortiguar los cambios de consumo que pueden dar lugar en las maniobras y las oscilaciones bruscas en la presión de alimentación.
Para el cálculo este estudio no lo consideraremos al no tener un efecto sobre la pérdida de carga del flujo de alimentación.

1.7. Motores principales

Los motores elegidos por el armador para la propulsión del buque son suministrados por Caterpillar Motoren Gmbh. Son motores del fabricante alemán Mak, absorbido por Caterpillar en 1997 para introducirse en el mercado de los motores de media velocidad. La compañía adquirió el nombre de Caterpillar Motoren en el año 2000.

Los dos motores son Mak M43 C. La serie M43 fue presentada en 1998. Se trata de motores de media velocidad de carrera larga de cuatro tiempos, con inyección directa de combustible.

Para cumplir los requisitos de potencia la elección se limita a la configuración de nueve cilindros en línea, que para el modelo de 500 rpm significa 9000 kW de potencia.

Se incluyen algunos datos del motor:

- Diámetro del cilindro: 430 mm
- Carrera: 610 mm
- Relación carrera/ diámetro: 1,42
- Volumen barrido: 88,6 l/cil.
- Potencia/ cil: 1.000kW
- Presión media: 27,1 bar
- Revoluciones: 500
- Velocidad media del émbolo: 10,2 m/s

El motor está diseñado para funcionar con combustible hasta 700cSt/ 50ºC.

Un dato a tener en cuenta es que los datos de consumo de combustible se dan para unas condiciones de referencia que son las siguientes:
Temperatura de admisión: 25°C (298K)

Temperatura de aire de carga: 45°C (318K)

Entrada de agua en enfriador de aire: 25°C (298K)

Poder calorífico inferior del gasoil: 42.700kJ/kg

Existe una tolerancia de 5% en los datos de consumo al que se suma un 1% en el caso de que el motor lleve bombas acopladas, como es el caso.

La tabla de datos técnicos para el motor de nueve cilindros incluye los valores de consumo específico de combustible para cuatro estados de carga diferentes pero siempre manteniendo el funcionamiento a revoluciones constantes, 500 rpm en este caso.

El siguiente cuadro de la tabla 5 resume el consumo específico de combustible (SFOC), y el consumo total en función del régimen de carga del motor, datos suministrados por Caterpillar.

<table>
<thead>
<tr>
<th>Carga</th>
<th>g/kWh</th>
<th>kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>176</td>
<td>1584</td>
</tr>
<tr>
<td>85%</td>
<td>175</td>
<td>1338,75</td>
</tr>
<tr>
<td>75%</td>
<td>177</td>
<td>1194,75</td>
</tr>
<tr>
<td>50%</td>
<td>184</td>
<td>828</td>
</tr>
</tbody>
</table>

Tabla 5

La gráfica en la figura 25 indica el consumo total, siendo el eje horizontal el consumo en kg/h
Haciendo el cálculo teniendo en cuenta la tolerancia indicada por el fabricante, tomando el consumo + 5% tolerancia + 2% debido a equipos acoplados, se presenta la tabla 6. En ella también se añade la última columna con el cálculo teniendo en cuenta la densidad del combustible utilizado, combustible pesado IFO 380, obtenido del apartado de combustibles. Se toma una densidad a 15°C de 991kg/m³.

<table>
<thead>
<tr>
<th>Carga</th>
<th>g/kWh</th>
<th>kg/h</th>
<th>kg/h tolerancia</th>
<th>l/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>176</td>
<td>1584</td>
<td>1695</td>
<td>1710,4</td>
</tr>
<tr>
<td>85%</td>
<td>175</td>
<td>1338,75</td>
<td>1432,5</td>
<td>1445,5</td>
</tr>
<tr>
<td>75%</td>
<td>177</td>
<td>1194,75</td>
<td>1278,4</td>
<td>1290</td>
</tr>
<tr>
<td>50%</td>
<td>184</td>
<td>828</td>
<td>886</td>
<td>894</td>
</tr>
</tbody>
</table>

Tabla 6

Así, el consumo máximo del motor principal, a 100% de carga sería 1710 l/h.

Como solicita la especificación técnica, los motores deben ser capaces de consumir una variedad de combustibles desde ligeros hasta pesados. Para
ello el fabricante incluye en la guía de proyecto información sobre el montaje requerido en uno u otro caso.

Para el combustible ligero el fabricante presenta el esquema que se muestra en la figura 26, obtenido de la Guía de Proyecto de Caterpillar.

Fig.26

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DT4 Tanque almacén</td>
<td>DF2 Filtro de diésel primario</td>
<td></td>
</tr>
<tr>
<td>DF3 Filtro</td>
<td>FQI Medidor de caudal</td>
<td></td>
</tr>
<tr>
<td>DP5 Bomba de depuradora</td>
<td>DH1 Calentador de combustible</td>
<td></td>
</tr>
<tr>
<td>DS1 Depuradora</td>
<td>DP1/2 Bomba de alimentación diésel</td>
<td></td>
</tr>
<tr>
<td>DH2 Calentador depuradora</td>
<td>DF1 Filtro fino</td>
<td></td>
</tr>
<tr>
<td>DP3 Bomba de trasiego</td>
<td>DH3 Enfriador de diésel de retorno</td>
<td></td>
</tr>
<tr>
<td>DT1 Tanque diario de diésel</td>
<td>DR2 Válvula reguladora de presión</td>
<td></td>
</tr>
</tbody>
</table>
Los componentes tienen que cumplir las características que se muestran a continuación.

- **Filtro fino DF1** - tamaño 0,025mm
- **Filtro DF2** - tamaño para sistema de HFO 0,34mm
- **Calentador DH1** - no necesario para la viscosidad de combustible dada
- **Enfriador DH3** - utilizado para evitar el calentamiento del tanque diario
- **Bombas DP1/2** - 3-5 bar en la entrada de las bombas de inyección
- **DT1** - Tanque de servicio diario de diésel

Las sociedades de clasificación exigen dos tanques de combustible diario, de un volumen que permita además del funcionamiento de los generadores, ocho horas de funcionamiento de los motores principales a pleno régimen. Se especifica la posición y volumen de estos tanques en el capítulo correspondiente.

Para el combustible pesado Caterpillar facilita el siguiente esquema de la figura 27 para indicar como debe ser el montaje del sistema de combustible.
Fig. 27

<table>
<thead>
<tr>
<th>HT5/6 Tanques de decantación</th>
<th>HR1 Válvula reguladora de presión</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF3 Filtro separadoras</td>
<td>HF4 Filtro autolimpieza</td>
</tr>
<tr>
<td>HP5/6 Bombas de alimentación purific.</td>
<td>HT2 Tanque de mezcla</td>
</tr>
<tr>
<td>HH3 Calentadores purif.</td>
<td>HP3/4 Bombas de circulación</td>
</tr>
<tr>
<td>HS1/2 Purificadoras/ separadoras</td>
<td>HH1/2 Calentadores de HFO</td>
</tr>
<tr>
<td>HT1 Tanque diario fuel</td>
<td>HR2 Viscosímetro</td>
</tr>
<tr>
<td>DT1 Tanque diario diésel</td>
<td>HF1 Filtro fino doble</td>
</tr>
<tr>
<td>HF2 Filtro primario</td>
<td>DH3 Enfriador para MDO</td>
</tr>
<tr>
<td>HP1/2 Bombas de alimentación</td>
<td></td>
</tr>
</tbody>
</table>
Para la circulación de HFO, el fabricante exige una velocidad del fluido en la entrada del motor \( \leq 0,5 \) m/s

Características de los componentes.

Filtro HF1 Tamaño 0,034mm
Filtro HF2 Tamaño 0,54mm, montado en el módulo
Filtro automático HF4 Tamaño de filtro 0,010mm

HP1/2 Bombas alimentación, presión de descarga 5 bar.
Caudal determinado por \( Q \ (m^3/h) = \frac{0,4P (kW)}{1000} \)
Para 9000kW el resultado es 3,6 \( m^3/h \).

HP3/4 Bombas de circulación, presión de descarga 5 bar
Caudal determinado por \( Q \ (m^3/h) = \frac{0,7P (kW)}{1000} \)
Para 9000kW el resultado es 6,3 \( m^3/h \)

Exige que estas dos bombas sean de tornillo con sello mecánico.

HR1 Válvula reguladora, tarada a una presión aproximada de 4 bar.

HH1/2 Calentadores para dar una temperatura máxima en el motor de 150ºC

HT2 Tanque de mezcla, que según Caterpillar para una potencia inferior a 10000kW tendrá un volumen de 100 litro.

HT5 Tanque de sedimentación, con capacidad suficiente para 36 horas de funcionamiento a plena carga de todos los consumidores. Recomiendan una temperatura entre 70-80ºC.

HT1 Tanque diario, que debe cubrir al menos 4 horas de funcionamiento. Debe contar con un sistema de rebose y estar aislado. Para este tanque la temperatura recomendada para este tipo de fuel residual está entorno a los 80-95ºC.

El sistema de combustible del motor está formado por una tubería que alimenta las bombas de inyección, una por cilindro, que elevan la presión al valor de inyección en torno a 570 bar; una tubería de retorno y una tubería
colectora de pérdidas. Esta última descarga al tanque de derrames previsto para esta función. La tubería de retorno devuelve al módulo de combustible el exceso de combustible no consumido. Esta línea también cuenta con una válvula que regula el exceso de presión y descarga directamente al tanque diario seleccionado.

La selección de combustible para alimentar a cada motor se realiza en el módulo de alimentación de combustible. El propio módulo, en modo de diésel, cambia el retorno en función de la viscosidad y temperatura para retornarlo al tanque de mezcla pasando primero por el enfriador.

Para el caso de combustible ligero Caterpillar recomienda una presión en la entrada de las bombas de inyección entre 3 – 5 bar. Para HFO esta presión está entre 4 - 5 bar.

Este es un dato a tener en cuenta ya que es el objetivo final de este estudio.

Se monta adicionalmente un sistema de alimentación paralelo solo para combustible ligero, que aspira de los tanques de consumo diario de diésel, impulsado por una electrobomba de tornillo de 6,5 m³/h y 5 bar. Esta bomba está conectada al cuadro eléctrico de emergencia y permite alimentar los motores principales o los auxiliares, con la limitación del caudal de combustible. A la entrada de cada filtro fino de cada motor, principales y auxiliares, se monta una válvula de tres vías que permite seleccionar el combustible que suministra el módulo de combustible o el que suministra la bomba de diésel de emergencia. En la línea de retorno se monta otra válvula de tres vías que sirve para retornar el combustible hacia el módulo o bien hacia el tanque diario de gasoil, cuando lo que se emplea es la bomba diésel de emergencia para alimentar el motor.

La figura 28 muestra el diagrama de la instalación del sistema de combustible para motores principales a bordo del buque. Se omite en este diagrama el nombre de las líneas y válvulas para mejorar la visibilidad. Se incluirán en el momento del cálculo.

En esta figura sólo se muestra el circuito de alimentación a través del módulo de combustible. En la figura 29 se incluye el circuito completo que
incluye además la línea de diésel con la bomba de emergencia, dibujada con línea discontinua.
El módulo de combustible permanece en funcionamiento incluso con el motor parado y mantiene el combustible en circulación y con la viscosidad optima de inyección, al seguir regulando su temperatura.

La temperatura del motor se mantiene, una vez parado, mediante el sistema de precalentamiento del agua de refrigeración.
Todo esto permite realizar el arranque y parada del motor sin necesidad de modificar el tipo de combustible.

Pero para funcionamiento con cargas por debajo de 25% el funcionamiento con combustible pesado no resulta rentable. Para evitar un aumento del desgaste de los elementos, una excesiva contaminación del lubricante y de las válvulas y sistema de escape. Por ello Caterpillar recomienda el cambio a combustible ligero por debajo de ese límite y según lo indicado en el siguiente gráfico de la figura 30.

Fig. 30

1.7.1. RESUMEN

El fabricante exige como componentes del módulo de suministro:

Un filtro primario doble de malla 0,54mm
Dos bombas de alimentación de 3,6 m³/h y 5 bar de presión
Un sistema de regulación de presión
Un filtro con limpieza automática de 0,010mm de malla
Un medidor de flujo

Un tanque de mezcla de alrededor de 100 litros

Dos bombas de circulación de 6,3 m³/h y 5 bar

Dos calentadores

Un elemento de regulación de calentamiento

Un control de la viscosidad

Un enfriador para operación con gasoil

Como se puede ver en el apartado dedicado al módulo de suministro de combustible, estas exigencias se cumplen con creces, donde las bombas están dimensionadas para superar estos valores, tanto de presión como de caudal.

### 1.8. Motores auxiliares

La especificación técnica solicita tres motores auxiliares de 1100kW de potencia a 1000rpm.

Los motores son suministrados, al igual que en el caso de los motores principales, por Caterpillar Motoren. Para el requisito de potencia, dentro de la oferta del fabricante, la elección es el motor MaK M20C en configuración de seis cilindros en línea.

Completa el grupo electrógeno un alternador acoplado mediante un acoplamiento elástico al motor, con velocidad de giro 1000rpm para 50Hz.

El resultado es un motor de 1140 kW de potencia para unos alternadores que suministran 1094kWe considerando una eficiencia de 96% y un factor de potencia 0,8.

Algunos datos del motor son los siguientes:
Diámetro del cilindro: 200 mm

Carrera: 300 mm

Relación carrera/ diámetro: 1,5

Volumen barrido: 9,4 l/cil.

Potencia/ cil: 190kW

Presión media: 24,2 bar

Revoluciones: 1000

Velocidad media del émbolo: 10 m/s

Al igual que los motores principales, los auxiliares también están preparados para funcionar con combustible hasta 700cSt/ 50°C.

El siguiente cuadro de la tabla 7 resume el consumo específico de combustible (SFOC), y el consumo total en función del régimen de carga del motor, datos suministrados por Caterpillar.

<table>
<thead>
<tr>
<th>Carga</th>
<th>g/kWh</th>
<th>kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>190</td>
<td>216,5</td>
</tr>
<tr>
<td>85%</td>
<td>189</td>
<td>183</td>
</tr>
<tr>
<td>75%</td>
<td>190</td>
<td>162,5</td>
</tr>
<tr>
<td>50%</td>
<td>198</td>
<td>113</td>
</tr>
</tbody>
</table>

La gráfica de la figura 31 indica el consumo total, siendo el eje horizontal el consumo en kg/h.
Haciendo el cálculo teniendo en cuenta la tolerancia indicada por el fabricante, tomando el consumo + 5% tolerancia + 2% debido a equipos acoplados, se presenta la tabla 8. En ella también se añade la última columna con el cálculo teniendo en cuenta la densidad del combustible utilizado, combustible pesado IFO 380, obtenido del apartado de combustibles. Se toma una densidad a 15°C de 991kg/m³.

<table>
<thead>
<tr>
<th>Carga</th>
<th>g/kWh</th>
<th>kg/h</th>
<th>kg/h tolerancia</th>
<th>l/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>190</td>
<td>216,5</td>
<td>231,5</td>
<td>233,5</td>
</tr>
<tr>
<td>85%</td>
<td>189</td>
<td>183</td>
<td>196</td>
<td>197,5</td>
</tr>
<tr>
<td>75%</td>
<td>190</td>
<td>162,5</td>
<td>174</td>
<td>175,5</td>
</tr>
<tr>
<td>50%</td>
<td>198</td>
<td>113</td>
<td>121</td>
<td>122</td>
</tr>
</tbody>
</table>

Tabla 8

Este motor, al igual que el M43, está preparado para poder funcionar el todo su rango de operaciones con combustible pesado. Aquí el combustible también se mantiene en circulación después de parado el motor y circulando por el módulo de combustible con lo que la regulación de temperatura en continua. Esto permite en arranque en cualquier momento. Característica
necesaria puesto que la planta eléctrica tiene la capacidad de funcionar en un modo totalmente automático que conecta o desconecta generadores en función de la demanda de potencia eléctrica.

Para este caso el fabricante también recomienda en uso de combustible ligero para los casos de funcionamiento a cargas excesivamente bajas, pero dado que es un sistema que dispone de múltiples motores, conectando o desconectando equipos de la red se consigue que funcionen con cargas cercanas a la óptima.

De la guía de proyecto del motor se extraen los diagramas que muestran los elementos que exige el fabricante en la línea de combustible.

Para combustible ligero Caterpillar presenta el de la figura 32.
Los componentes tienen que cumplir las características que se muestran a continuación.

Filtro fino DF1 - tamaño 0,025mm
Filtro DF2 - tamaño para sistema de HFO 0,34mm
Calentador DH1 - no necesario para la viscosidad de combustible dada
Enfriador DH3 - utilizado para evitar el calentamiento del tanque diario
Bombas DP1/2 - 3-5 bar en la entrada de las bombas de inyección
DT1 - Tanque de servicio diario de diésel

Las sociedades de clasificación exigen dos tanques de combustible diario, de un volumen que permita al menos ocho horas de funcionamiento de los motores principales a pleno régimen y el funcionamiento de los auxiliares.

Para el combustible pesado Caterpillar facilita el esquema de la figura 33 para indicar como debe ser el montaje del sistema de combustible.
Fig. 33

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HT5/6</td>
<td>Tanques de sedimentación</td>
</tr>
<tr>
<td>HF3</td>
<td>Filtro grueso</td>
</tr>
<tr>
<td>HP5/6</td>
<td>Bombas de trasiego de FO</td>
</tr>
<tr>
<td>HS1/2</td>
<td>Depuradoras de FO</td>
</tr>
<tr>
<td>HH3</td>
<td>Calentadores de depuradoras</td>
</tr>
<tr>
<td>HT1</td>
<td>Tanque diario</td>
</tr>
<tr>
<td>HF2</td>
<td>Filtro primario</td>
</tr>
<tr>
<td>HP1/2</td>
<td>Bombas de alimentación</td>
</tr>
<tr>
<td>HF4</td>
<td>Filtro automático</td>
</tr>
<tr>
<td>HT2</td>
<td>Tanque de mezcla</td>
</tr>
<tr>
<td>HP3/4</td>
<td>Bombas de circulación</td>
</tr>
<tr>
<td>HH1/2</td>
<td>Calentadores</td>
</tr>
<tr>
<td>HR2</td>
<td>Viscosímetro</td>
</tr>
<tr>
<td>HF1</td>
<td>Filtro dúplex</td>
</tr>
<tr>
<td>DH3</td>
<td>Enfriador para gasoil</td>
</tr>
</tbody>
</table>

Los componentes tienen que cumplir las características que se muestran a continuación.
Filtro fino HF1 - tamaño 0,034mm

Filtro HF2 - tamaño para sistema de HFO 0,54mm

Filtro HF4 – tamaño de malla 0,010mm

Bombas HP1/2 – Presión de descarga 5 bar y caudal determinado por:

\[ Q \text{ (m}^3/h) = 0.4 \frac{P \text{(kW)}}{1000} \]

Para un motor a 100% de carga (1140kW) da 0,456 m³/h

Para tres motores 1,368 m³/h

Bombas de circulación HP3/4 - Presión de descarga 5 bar

Caudal dado por: \[ Q \text{ (m}^3/h) = 0.7 \frac{P \text{(kW)}}{1000} \]

Para un motor a 100% de carga (1140kW) da 0,798 m³/h

Para tres 2,4 l/h

Calentadores HH1/2 – Calentadores eléctricos

HT2 - Tanque de mezcla de aproximadamente 100l

Enfriador DH3 - utilizado sólo en operación con diésel

HT5 – Tanque de sedimentación, con una capacidad tal para cubrir 24 horas de funcionamiento de todos los consumidores.

HT1 – Tanque de servicio diario, con capacidad para un mínimo de cuatro horas de funcionamiento de todos los consumidores. Temperatura alrededor de 90-95ºC.

Adicionalmente el sistema cuenta con un tanque de gravedad de una capacidad aproximada de 30 l para cada motor, situados a una altura mayor de 10 m sobre el motor, para los casos de arranque automático en emergencia.

El sistema de combustible del motor está formado por una tubería que alimenta las bombas de inyección, una por cilindro, que elevan la presión al
valor de inyección en torno a 500 bar; una tubería de retorno y una tubería colectora de pérdidas. Esta última descarga al tanque de derrames previsto para esta función. La tubería de retorno devuelve al módulo de combustible el exceso de combustible no consumido. Esta línea también cuenta con una válvula que regula el exceso de presión y descarga directamente al tanque diario seleccionado.

La selección del tipo de combustible, ligero o pesado, se hace en el módulo de suministro de combustible. Con la particularidad de que solamente es posible consumir un tipo de combustible por cada módulo, es decir, no se puede alimentar a través del mismo módulo con combustible ligero los motores generadores y con un combustible pesado los motores principales por poner un ejemplo.

Los motores generadores también se pueden alimentar mediante un sistema paralelo que utilizan la misma electrobomba que los motores principales, 5 bar y 6,5 m³/h, que suministra gasoil de los tanques diarios de diésel. Cuando la alimentación se hace de este modo, el retorno de combustible se hace a los tanques diarios directamente.

La figura siguiente, figura 34, muestra el esquema del sistema de alimentación final, y al igual que en el caso de los esquemas de motores principales, ahora se omite los nombres de las líneas y accesorios para claridad del dibujo.

Este primer esquema muestra la alimentación a través del módulo de combustible.
Fig 34
El esquema de la figura 35 incluye el servicio con la bomba diésel de emergencia.

Fig 35

El plano PL 002 muestra todos estos elementos con su nomenclatura
Igual que en los motores principales, el combustible se mantiene circulando por el motor aunque este parado. El módulo sigue alimentando y tratando el combustible de modo que siempre se mantiene con la viscosidad correcta, lo que permitirá al motor arrancar en cualquier momento.

Y la temperatura del motor se mantiene con un precalentamiento del agua de refrigeración que se activa en el momento que el motor se para.

Se permite realizar el arranque y parada del motor sin necesidad de modificar el tipo de combustible.

También para los motores auxiliares el funcionamiento con cargas por debajo de 25% el funcionamiento con combustible pesado no resulta rentable. Para evitar un aumento del desgaste de los elementos, una excesiva contaminación del lubricante y de las válvulas y sistema de escape. Por ello Caterpillar recomienda el cambio a combustible ligero por debajo de ese límite y según lo indicado en el siguiente gráfico de la figura 36, igual que para motores principales.

![Fig. 36](image-url)
1.8.1. RESUMEN

El fabricante exige como componentes del módulo de suministro:

- Un filtro primario doble de malla 0,54mm
- Dos bombas de alimentación de 0,45 m³/h y 5 bar para cada uno
- Un sistema de regulación de presión
- Un filtro con limpieza automática de 0,010mm de malla
- Un medidor de flujo
- Un tanque de mezcla de alrededor de 100 litros
- Dos bombas de circulación de 0,8 m³/h y 5 bar para cada uno
- Dos calentadores
- Un elemento de regulación de calentamiento
- Un control de la viscosidad
- Un enfriador para operación con gasoil

En el apartado dedicado al módulo de suministro de combustible, se puede ver que estas exigencias se cumplen, donde las bombas están dimensionadas para superar estos valores.

1.9. TUBERÍA

Las tuberías de sección circular son la más frecuentes puesto que esta forma ofrece la mayor sección transversal para para el mismo perímetro exterior y mayor resistencia estructural que otras formas.

Para unificar criterios de construcción de tubería se crean normas, que afectan tanto a los materiales, conformado, pruebas, como a las dimensiones.

En la especificación técnica del buque se indica las normas a aplicar en los trabajos de tubería, siguiendo las normas del astillero y normalmente cumpliendo las normas internacionales ASTM y DIN.
Dentro de la especificación técnica se dan algunas aclaraciones para el montaje de la tubería, como la utilización de conducciones lo más directas posibles con la mínima cantidad de curvas y la recomendación de no utilizar curvas de radio inferior a 2,5 veces el diámetro de la tubería.

Las velocidades máximas del combustible en las tuberías, tanto de combustible pesado como ligero vienen dadas en las especificación técnica, siendo el límite 2,5 m/s.

Las tuberías de combustible llevarán aislamiento de lana de roca, recubrimiento de venda de fibra de vidrio y con tubería de acompañamiento de vapor que irá montado rodeando el tubo.

La sociedad de clasificación crea tres divisiones de los sistemas de tuberías, denominadas clase I, clase II y clase III con la finalidad de aprobación de materiales, elección del tratamiento térmico, tipo de soldadura y pruebas de presión.

Para esta ocasión se emplea tubería de acero estirado, sin soldadura dentro de la clase II del reglamento de la sociedad de clasificación. Según la tabla que incluye la documentación de la casa clasificadora, el sistema de tubería debe cumplir con las condiciones de trabajo especificadas en su categoría, es decir, para presiones de trabajo comprendidas entre 0,7 y 1,6 MPa, y temperatura de trabajo comprendida entre 60ºC y 150ºC. Se muestra en la tabla 9.

Según las indicaciones de la sociedad de clasificación, las presiones de diseño se toman para esta categoría como las máximas presiones de trabajo.

La presión de prueba de la tubería se toma como 1,5 veces la presión de trabajo de cada línea.

Tab. 3 de la parte C, capítulo 1, sección 10-1.5.2 del reglamento de BV.
Tabla 9

Dado que en función de la presión de trabajo de cada sistema se exige una resistencia de la tubería, la Sociedad de Clasificación establece unos espesores mínimos para cada tipo de tubería, que para tubo de acero se muestra en la siguiente tabla.

La Sociedad de Clasificación también da un método de cálculo para obtener el espesor, pero en ningún caso deberá ser inferior al dado por la tabla.

La Clasificadora también da instrucciones en forma de tabla o método de cálculo para obtener las tensiones máximas admitidas, el adelgazamiento en los codos o incluso la pérdida de espesor debido a la oxidación del material.
Recomienda también sobre los métodos de unión de tubería y de bridas. Tanto sobre materiales como resistencias de las soldaduras.

Para cumplir con los requerimientos de la sociedad de clasificación se emplea tubería de acero al carbono sin soldadura para alta temperatura de acuerdo al estándar internacional ASTM A106 Grado B. Esta tubería está disponible con los requisitos dimensionales de la norma ANSI B36.10.

El estándar ASTM especifica la composición química del material, con lo que hay variaciones en las propiedades mecánicas del tubo.

La tabla 11 muestra las propiedades mecánicas en función de los tres grados que hay para la tubería A106.

<table>
<thead>
<tr>
<th>Grado A</th>
<th>Grado B</th>
<th>Grado C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistencia a</td>
<td>330 MPa</td>
<td>415 MPa</td>
</tr>
</tbody>
</table>
tracción min. | (48.000 psi) | (60.000 psi) | (70.000 psi)  
--- | --- | --- | ---  
Fluencia min. | 205 MPa (30.000 psi) | 240 MPa (35.000 psi) | 275 MPa (40.000 psi)  

Tabla 11

La siguiente tabla muestra la composición química en función de los diferentes grados.

<table>
<thead>
<tr>
<th></th>
<th>Grado A</th>
<th>Grado B</th>
<th>Grado C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbono, máx.</td>
<td>0,25</td>
<td>0,30</td>
<td>0,35</td>
</tr>
<tr>
<td>Manganeso</td>
<td>0,27-0,93</td>
<td>0,29-1,06</td>
<td>0,29-1,06</td>
</tr>
<tr>
<td>Fósforo, máx.</td>
<td>0,035</td>
<td>0,035</td>
<td>0,035</td>
</tr>
<tr>
<td>Azufre, máx.</td>
<td>0,035</td>
<td>0,035</td>
<td>0,035</td>
</tr>
<tr>
<td>Silicio, mín.</td>
<td>0,10</td>
<td>0,10</td>
<td>0,10</td>
</tr>
<tr>
<td>Cromo, máx.</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>Cobre, máx.</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>Molibdeno, máx.</td>
<td>0,15</td>
<td>0,15</td>
<td>0,15</td>
</tr>
<tr>
<td>Níquel, máx.</td>
<td>0,40</td>
<td>0,40</td>
<td>0,40</td>
</tr>
<tr>
<td>Vanadio, máx.</td>
<td>0,08</td>
<td>0,08</td>
<td>0,08</td>
</tr>
</tbody>
</table>

Tabla 12

La tubería A106 es una tubería apta para el plegado, abriendo y soldadura, para servicios de alta temperatura.

En cuanto a dimensiones, las tuberías se normalizan por su diámetro exterior y se da su grosor en función del diámetro. Así aparece el término Schedule para indicar el espesor de cada tubería. Inicialmente existía un
Espesor (Schedule) estándar denominado STD, standard, per para los diversos servicios de industriales en los que se requerían mayores presiones se crearon diferentes espesores, que incluyen diferentes valores de Schedule, manteniéndose el diámetro exterior.

En este caso la tubería se ajusta a la norma ASME B36.10. Esta norma establece las dimensiones de tubería e incluye calidades de acero según ASTM A106.

Dentro de todas las posibilidades dimensionales en la tabla 13 se resumen las utilizadas en el sistema de combustible, siempre con un espesor estándar, Schedule 40.

<table>
<thead>
<tr>
<th>DN</th>
<th>diámetro ext. x espesor</th>
<th>Identif. de espesor</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>26,7 x 2,9</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>25</td>
<td>33,4 x 3,4</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>32</td>
<td>42,2 x 3,6</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>40</td>
<td>48,3 x 3,7</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>50</td>
<td>60,3 x 3,9</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>65</td>
<td>73 x 5,2</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>80</td>
<td>88,9 x 5,5</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>100</td>
<td>114,3 x 6,0</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>125</td>
<td>141,3 x 6,5</td>
<td>Sch 40 STD</td>
</tr>
<tr>
<td>150</td>
<td>168,3 x 7,1</td>
<td>Sch 40 STD</td>
</tr>
</tbody>
</table>

Tabla 13

Las bridas van soldadas a la tubería, y en este caso, dimensionalmente siguen la norma DIN, lo que influye en el tipo de válvulas que hay que montar.
1.10. **BOMBAS DE TORNILLO**

Las bombas de tornillo son un tipo de bomba de desplazamiento positivo en las que el flujo a través de la bomba es completamente axial. El fluido es transportado entre los perfiles roscados que forman uno o varios rotores cuando engranan. Las características de flujo de estas bombas las hacen adecuadas para mover fluidos de alta viscosidad, cubren un amplio rango de presiones (3-300 bar) y caudales de hasta 1800 m$^3$/h.

Este tipo de bombas son autocebantes y la descarga es generalmente independiente de la presión, siempre y cuando el líquido tenga la suficiente viscosidad para ser bombeado.

Las bombas pueden ser de un tornillo o de varios y, en este último caso, hay un husillo conductor y los demás engranan con él, como se puede ver en la figura 37.

![Fig. 37](image)

Otras dos características de este tipo de bombas es que el fluido se mueve internamente a baja velocidad, y esta velocidad, determinada por la velocidad de giro de la bomba, se puede regular para obtener un caudal variable.

Como contrapartida son más costosas por el mecanizado que exigen las diferentes piezas en las que se exigen pequeñas tolerancias, que influyen en el rendimiento de las bombas.
El engrane de los perfiles roscados del rotor con los husillos y el estrecho espacio entre ellos forman los huecos por donde se conduce el fluido desde la aspiración hasta la descarga.

Al tratarse de una bomba de desplazamiento positivo, la bomba descarga una cantidad determinada por cada revolución del rotor. Esta descarga está determinada por el volumen de desplazamiento $V_D$, que es el volumen teórico que la bomba descarga en cada revolución, y que depende de las características geométricas de la bomba.

Así se define el caudal teórico que descarga la bomba:

$$Q_t = k \cdot V_D \cdot N$$

Siendo $V_D$ – desplazamiento 

$N$ – revoluciones

Si se tiene en cuenta que existen ciertas tolerancias internas que provocan que parte del fluido se escape entre los elementos internos de la bomba cuando se crea una diferencia de presión entre la descarga y la aspiración, el caudal descargado es menor.

La fuga de fluido por los espacios internos recibe el nombre de deslizamiento. Este deslizamiento es la cantidad de fluido que regresa desde la descarga a través de los huelgos existentes entre los husillos del rotor y los conducidos o entre estos y las paredes laterales. Este deslizamiento además de depende de la tolerancia de fabricación también depende de la presión de descarga y es inversamente proporcional a la viscosidad del fluido.

La grafica de la figura 38 muestra la curva de funcionamiento de una bomba de tornillo, también teniendo en cuenta el deslizamiento, que aumenta con la presión.
Fig. 38

Conociendo las dimensiones de la bomba y la geometría del husillo es posible determinar el caudal teórico de la bomba.

Fig. 39

El volumen de cada cavidad que mueve el fluido es proporcional al diámetro del husillo y al paso de rosca. Esto se puede ver en la figura 39

\[
Q_t = K_1 \times \text{paso} \times D^2 N
\]

Se observa que el caudal descargado es proporcional a la velocidad de giro de la bomba, con lo que para diferentes velocidades se obtienen diferentes
descargas. Pero también se observa que un ligero aumento del tamaño de la bomba puede conseguir un importante aumento del caudal descargado.

Esto es lo que ocurre en el caso de las bombas utilizadas en el módulo de tratamiento de combustible, donde, se utiliza la misma bomba, con dos velocidades diferentes para obtener distintas propiedades de descarga. Unas bombas que sirven de bombas de alimentación y otras que hacen de bombas de circulación.

Si tenemos en cuenta el deslizamiento:

\[ Q = Q_t - S \]

El caudal disminuye en valor por el deslizamiento.

1.11. **FLUJO EN TUBERÍAS**

El flujo de un fluido en una tubería viene siempre acompañado de un rozamiento de las partículas del fluido entre sí y con las paredes de la tubería. Esto provoca una pérdida de energía disponible y consecuentemente una caída de presión en el sentido del flujo.

El ingeniero alemán Hagen encontró en 1839 en un experimento la existencia de dos tipos de flujo diferente. Una zona donde las pérdidas de carga variaban linealmente con la velocidad \( V=Q/A \). Y otra, en la que, a partir de cierta velocidad, la caída de presión era casi cuadrática con la velocidad. Se ven las dos zonas en la figura 40.
En 1883, Reynolds demostró que el cambio de comportamiento dependía del parámetro $\frac{\nu}{\mu}$ denominado en su honor número de Reynolds.

El número de Reynolds es un parámetro adimensional que expresa la relación entre las fuerzas viscosas y las fuerzas de inercia.

$$Re = \frac{\varphi V d}{\mu} = \frac{V d}{\nu} = \frac{4Q}{\pi dV}$$

Donde:
- $Q$ – caudal
- $V$ – velocidad
- $\mu$ - viscosidad
- $\nu$ – viscosidad cinemática
- $\rho$ – densidad

Actualmente se considera que la zona de variación lineal correspondiente al régimen laminar llega hasta valores de $Re=2300$. Por encima de $Re=4000$ el flujo se considera completamente turbulento.
El flujo laminar se caracteriza por no tener fluctuaciones y presentar un perfil de velocidad determinado, donde la velocidad del fluido en máxima en el centro y disminuya hasta ser nula en las paredes de la tubería.

Al aumentar la velocidad aparecen pequeñas perturbaciones en el flujo, hay un movimiento irregular de las partículas del fluido en direcciones transversales a la dirección de flujo. El perfil de velocidades en este caso es diferente, con una distribución más uniforme a través del diámetro de la tubería.

La zona intermedia es una zona de transición, con flujo inestable.

Los análisis de fluidos son aptos para los flujos laminares o flujos turbulentos pero no para los que se encuentran en la zona de transición, por lo que se trata de evitar crear sistemas que operen en esta zona intermedia.

En el caso de flujos en tubería, el fluido está contenido por las paredes del tubo y aparecen esfuerzos viscoso debido al rozamiento del fluido con la pared, que afectan a todo el flujo.

En régimen laminar se cumple la ley de Newton de la viscosidad y el esfuerzo cortante en proporcional a la deformación del fluido.

\[ \tau_0 = \mu \frac{\partial v}{\partial y} = \frac{8\mu v}{d} \]

En régimen turbulento no es válida la ley de Newton y experimentalmente se obtiene que el esfuerzo cortante depende del cuadrado de la velocidad.

\[ \tau_0 = \frac{8\rho v^2}{8} \]

Para el caso de un combustible líquido, que tomamos en este estudio, asumimos la condición de incompresibilidad, donde se tiene que cumplir la ecuación de continuidad.

\[ Q = \int udA = \text{constante} \]
En la figura 41 se puede observar el flujo en un conducto, donde hay una zona de entrada en la que se puede considerar un flujo no viscoso y en la que la velocidad depende del diámetro de la tubería y de la posición respecto a la sección de entrada.

A una determinada distancia de la entrada el núcleo no viscoso disminuye y aumenta la capa viscosa hasta que el núcleo no viscoso desaparece. En ese punto el flujo se puede considerar completamente viscoso y el perfil de velocidades sólo va a depender del diámetro del tubo $u(u(r))$

A partir de este punto $x$, que corresponde a la longitud de entrada $x=L_e$ el flujo está completamente desarrollado y la caída de presión es proporcional a $x$, tanto para flujo laminar como turbulento.

El número de Reynolds es el único parámetro que afecta a la longitud de entrada, pero en el caso del estudio se tomará el flujo como completamente desarrollado para el cálculo.
Para el estudio del flujo en tuberías emplearemos las ecuaciones de continuidad, cantidad de movimiento y de energía, que para los supuestos de flujo estacionario, sin aporte térmico, con viscosidad constante y para los casos de flujo incompresible se escriben de la siguiente forma:

\[ S_1 V_1 = S_2 V_2 = Q \]

\[ \sum F = \rho Q (V_2 - V_1) \]

\[ \frac{p_1}{\rho} + \alpha_1 \frac{V_1^2}{2} + g z_1 + H_B = \frac{p_2}{\rho} + \alpha_2 \frac{V_2^2}{2} + g z_2 + h_f \]

Donde:

- \( S \) – sección
- \( V \) – velocidad
- \( F \) – fuerza
- \( \rho \) – densidad
- \( Q \) – caudal
- \( P \) – presión
- \( z \) – cota de altura
- \( \alpha \) – factor de corrección de energía cinética
- \( H_B \) – energía que aporta una bomba
- \( h_f \) – energía perdida por fricción

Para el caso de flujo completamente desarrollado consideraremos que el factor de corrección de energía cinética \( \alpha_1 = \alpha_2 \) y la última ecuación quede en la forma:

\[ \frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 + H_B = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_f \]

Las pérdidas de energía por rozamiento dependen fundamentalmente del cuadrado del caudal.

\[ h_f = k Q^2 \]

La constante \( k \) depende de la longitud, del diámetro, de la viscosidad, de la rugosidad de la pared del tubo.
Este tipo de pérdidas, debidas a rozamientos del fluido con las paredes de la tubería se denominan pérdidas lineales.

Cuando las pérdidas no se producen en tramos de tubería recta, sino que se originan en entradas o salidas de tubería, en codos, válvulas, cambios de diámetro, etc. se denominan pérdidas singulares.

1.11.1. PÉRDIDAS LINEALES

En un tramo de tubería, mostrado en la figura 42, de sección constante se plantea el equilibrio de presiones con el esfuerzo cortante.

\[
p_1 = p_2 + \Delta p
\]

Al ser la sección constante \( V_1 = V_2 \) y la ecuación de la energía queda:

\[
\frac{p_1}{\rho g} + z_1 = \frac{p_2}{\rho g} + z_2 - h_f
\]

\[h_f = \Delta Z + \frac{\Delta \rho}{\rho g}\]

La ecuación del momento:

\[\Delta \rho \pi R^2 + \rho g (\pi R^2) \Delta \theta \rho \omega (2\pi R) \Delta L = \dot{m}(V_2 - V_1) = 0\]

Relacionando las presiones y el esfuerzo cortante:
Se puede obtener así la expresión para la pérdida de carga por fricción en tubería:

\[ h_f = f \frac{L V^2}{D^2 g} \]

Esta es la ecuación de Darcy-Weisbach y f es el coeficiente de fricción de Darcy. Esta ecuación es válida para cualquier flujo en tubería tanto para flujo laminar como flujo turbulento.

Para los casos de flujo laminar se toma el factor de Darcy como:

\[ f_{lam} = \frac{64}{R_e} \]

Que aplicado a la ecuación de Darcy da el siguiente resultado:

\[ h_{f\ lam} = f_{lam} \frac{L V^2}{D^2 g} = \frac{64 \mu L V^2}{p V D^2 g} = \frac{32 \mu L V}{\rho g D^2} = \frac{128 \mu L Q}{\pi p g D^2} \]

Se observa que en el caso de flujo laminar las pérdidas son proporcionales a la velocidad.

Para el caso de flujo turbulento hay que tener en cuenta que la rugosidad de la superficie tiene un efecto en la resistencia por fricción. Este efecto, que en flujo laminar es despreciable, si tiene importancia en flujo turbulento.

Así, en flujo turbulento, el coeficiente de fricción depende del número de Reynolds y de la rugosidad relativa \( \varepsilon/D \), predominando uno u otro parámetro en función de la relación entre la rugosidad y el espesor de la subcapa límite laminar que se crea.

Esta subcapa límite laminar es la zona inferior de la capa límite donde las fuerzas viscosas aumentan tanto que el flujo es laminar. Cuando el espesor de la subcapa límite es grande respecto a la rugosidad, la tubería puede considerarse lisa y f dependerá solo de Re.

\[ \frac{1}{f} = 2 \log \left[ \frac{Re \sqrt{T}}{2.51} \right] \]

Si el número de Reynolds aumenta la importancia de la subcapa límite disminuye frente a la rugosidad y el factor de fricción depende de \( \varepsilon/D \).
Posteriormente Colebrook y White unieron las dos ecuaciones anteriores en una expresión que se puede aplicar a todo tipo de régimen turbulento:

\[ \frac{1}{\sqrt{f}} = 2 \log \left[ 3,7 \frac{D}{e} \right] \]

Partiendo de esta expresión Moody desarrolló un diagrama que permite determinar de forma rápida el coeficiente de fricción. Se muestra en la figura 43.

Para obtener el valor de rugosidad se suelen emplear valores de rugosidad absoluta dados para tuberías comerciales, en función del material constructivo. La tabla 14 tiene algunos valores.
Fig. 43
Este valor de rugosidad puede cambiar con el tiempo debido a suciedad que solidifica en las paredes, degradación de la tubería...

1.11.2. PÉRDIDAS SINGULARES

Estas pérdidas, que son pérdidas adicionales, son debidas a:

- Entradas y salidas de tubería
- Expansiones o reducciones repentinas
- Curvas, codos, tes y otros accesorios
- Válvulas, abiertas o parcialmente cerradas
- Expansiones o reducciones progresivas

Estas curvas también son proporcionales a la energía cinética del fluido y en la mayoría de los casos se miden de forma experimental. El cálculo viene dado por la relación entre la pérdida de carga a través del elemento y el valor de la energía cinética.

\[ k = \frac{h_s}{v^2/2g} = \frac{\Delta p/\rho g}{v^2/2g} = \frac{\Delta p}{\sqrt{2gh}v^2} \]

Denominado coeficiente de pérdidas singulares

\[ h_s = k \frac{v^2}{2g} = k \frac{Q^2}{2gS^2} = k \frac{8Q^2}{g\pi^2D^4} \]

Los valores típicos de k para algunos elementos habituales vienen dados en la tabla 15
Elementos | Coeficientes de pérdidas $\xi$
---|---
Entrada tubería
- Borde abrupto: 0.5
- Borde redondeado: 0.2
- Boca acampanada: 0.04

Expansiones
- $A_2/A_1$: 0.1, 0.2, 0.3, 0.4
- $C_e$: 0.624, 0.632, 0.643, 0.659

Constricciones
- $(1-A_1/A_2)^2$: 0.5, 0.6, 0.7, 0.8, 0.9
- $(1/C_e-1)^2$: 0.681, 0.712, 0.755, 0.813, 0.832

Codos
- Radio pequeño, $r/D=1$
  - 90º: 0.24
  - 45º: 0.1
  - 30º: 0.06
- Radio grande, $r/D=1.5$
  - 90º: 0.19
  - 45º: 0.09
  - 30º: 0.06
- Codos bruscos
  - 90º: 1.1
  - 60º: 0.55
  - 45º: 0.4
  - 30º: 0.15

Válvulas abiertas
- Esféricas: 0.05 a 0.2
- Conqueta: 0.1 a 0.3
- Manométrica: 0.2 a 0.6
- Globo: 3 a 10

**Tabla 15**

Y más específicamente para válvulas en la tabla 16.

<table>
<thead>
<tr>
<th>Diametro en pulgadas</th>
<th>Conexión roscada</th>
<th>Conexión con bridas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>Valves (fully open):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Globe</td>
<td>14</td>
<td>8.2</td>
</tr>
<tr>
<td>Gate</td>
<td>0.30</td>
<td>0.24</td>
</tr>
<tr>
<td>Swing check</td>
<td>5.1</td>
<td>2.9</td>
</tr>
<tr>
<td>Angle</td>
<td>9.0</td>
<td>4.7</td>
</tr>
</tbody>
</table>
| Elbows:
  - 45º regular       | 0.39             | 0.32               | 0.30               | 0.29               |                    |                    |                    |                    |                    |
  - 45º long radius   | 2.0              | 1.5                | 0.95               | 0.64               | 0.64               | 0.50               | 0.39               | 0.30               | 0.26               | 0.21               |
  - 90º regular       | 1.0              | 0.72               | 0.41               | 0.23               | 0.40               | 0.30               | 0.19               | 0.15               | 0.10               |
  - 180º regular      | 2.0              | 1.5                | 0.95               | 0.64               | 0.41               | 0.35               | 0.30               | 0.25               | 0.20               |
  - 180º long radius  |                    |                    |                    |                    |                    |                    |                    |                    |                    |
| Tees:
  - Line flow         | 0.90             | 0.90               | 0.90               | 0.90               | 0.24               | 0.19               | 0.14               | 0.10               | 0.07               |
  - Branch flow        | 2.4              | 1.8                | 1.4                | 1.1                | 1.0                | 0.80               | 0.64               | 0.58               | 0.41               |

**Tabla 16**
De este modo en un sistema de tuberías que puede tener múltiples accesorios con pérdidas singulares, se puede hacer el cálculo de la pérdida de carga en tubería de la siguiente forma:

$$\Delta h_{tot} = h_f + \sum h_m = \frac{V^2}{2g} \left( f \frac{L}{D} + \sum k \right)$$

Esto se aplica a tramos de tubería de sección constante, donde la velocidad del fluido no cambia, y el valor de la energía cinética $V^2/2g$ no varía.

En los casos de válvulas parcialmente abiertas, la pérdida de carga aumenta mucho. El coeficiente de pérdidas varía dependiendo del grado de apertura de la válvula, aunque para el cálculo en el estudio se empleará el valor para la válvula completamente abierta.

El grafico de la figura 44 muestra el valor de k para distintas posiciones de apertura en diversas válvulas.

![Fig. 44](image)

Cuando se trata de codos o curvas de tubería, las pérdidas siempre son mayores que las debidas a la simple longitud del codo o curva. Esto es debido a la separación de flujo de la pared del tubo y a la formación de un remolino provocado por la aparición de un segundo flujo, debido a la aceleración centrípeta.
Fig. 45

La figura 45 muestra los factores de pérdidas $K$ para esta pérdida adicional en los codos.

Cuando las reducciones o expansiones son bruscas, los bordes provocan la separación del fluido de la pared y un aumento de las pérdidas. Estos efectos no son importantes en la salida y nulos cuando se trata de una salida que está sumergida.

La figura 46 muestra la relación que existe entre las pérdidas y la geometría de entrada de la tubería. Un redondeo en la sección de entrada beneficia al factor de pérdidas hasta poder hacerlo despreciable para el cálculo.
Para las situaciones de reducción repentina o expansión brusca el cálculo se realiza con la gráfica de la figura 47, que utilizaremos en el cálculo de depósitos finitos.

Para la reducción brusca el coeficiente \( k \) es experimental si se obtiene de:

\[
K_c \approx 0.42 \left(1 - \frac{d^2}{D^2}\right)
\]
Fig. 47

Cuando la reducción o expansión es gradual las pérdidas son menores. En la figura 48 se puede ver el valor del coeficiente de pérdidas en el caso de una expansión gradual cónica.
Para reducciones, experimentalmente se obtiene:

**Tabla 17**

<table>
<thead>
<tr>
<th>áng. reducción 2θ</th>
<th>30º</th>
<th>45º</th>
<th>60º</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>0,02</td>
<td>0,04</td>
<td>0,07</td>
</tr>
</tbody>
</table>
2. **DISEÑO Y CÁLCULOS**

A partir del esquema del sistema de alimentación de combustible plano nº 002 que se muestra de forma resumida en la figura 49, sin introducir todavía los nombres de los accesorios y las líneas, se crea un diseño en tres dimensiones de la cámara de máquinas donde aparecen los módulos de tratamiento de combustible, los motores principales y auxiliares con las líneas de alimentación y retorno.

![Diagrama de alimentación de combustible](image-url)
A partir de este diseño 3D con medidas reales se obtienen las isométricas de tubería, que junto con los accesorios permite hacer el cálculo de pérdida de carga por fricción desde el módulo de suministro hasta el consumidor, sea motor principal o auxiliar.

Las figuras siguientes muestran imágenes de este diseño tridimensional de la cámara de máquinas.

Fig. 50
Con esta vista desde la perspectiva opuesta
Y una imagen del módulo de combustible desde dos puntos de vista.

Fig. 53

Fig. 54

En este diseño tridimensional aparecen todos los elementos que se incluye en el esquema de alimentación de combustible, con los nombres de líneas y accesorios, y respetando las posiciones en la estructura del buque.
En estas imágenes se muestran todas las líneas, lo que no facilita la visualización. Durante el proceso de cálculo sólo se mostrarán las líneas afectadas en cada caso lo que facilitará notablemente la lectura.

A partir de ese esquema se ha elaborado una lista de materiales que incluye los elementos de los circuitos de principales y auxiliares, que tienen alguna función en el estudio.

De la lista de materiales obtenemos el tipo de válvula o accesorio que va montado en la línea que se está estudiando en cada momento y así conocer los factores de pérdida de carga para estos elementos.

También es importante conocer los diámetros internos de la tubería por donde circula. Esto se obtiene de la siguiente tabla 18, resultado del cálculo en tuberías de espesor estándar, SCH40.

El conocimiento del diámetro interior nos permitirá conocer las velocidades del fluido por la tubería, y el factor de fricción vendrá dado por el material de la tubería y el grado de suciedad de esta.

### Tabla 18.

<table>
<thead>
<tr>
<th>DN</th>
<th>SCH</th>
<th>D</th>
<th>t</th>
<th>d</th>
<th>A_i</th>
<th>A_m</th>
<th>S_o</th>
<th>S_f</th>
<th>S_p</th>
<th>W_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>SCH40</td>
<td>26.67</td>
<td>3.48</td>
<td>20.93</td>
<td>3.441</td>
<td>2.146</td>
<td>0.0838</td>
<td>0.0658</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>SCH40</td>
<td>33.401</td>
<td>3.78</td>
<td>26.645</td>
<td>5.576</td>
<td>3.186</td>
<td>0.1049</td>
<td>0.0837</td>
<td>2.494</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>SCH40</td>
<td>42.164</td>
<td>3.556</td>
<td>35.052</td>
<td>9.65</td>
<td>4.313</td>
<td>0.1325</td>
<td>0.1101</td>
<td>3.377</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>SCH40</td>
<td>48.26</td>
<td>3.683</td>
<td>40.894</td>
<td>13.134</td>
<td>5.158</td>
<td>0.1516</td>
<td>0.1285</td>
<td>4.038</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>SCH40</td>
<td>60.325</td>
<td>3.912</td>
<td>52.501</td>
<td>21.648</td>
<td>6.933</td>
<td>0.1895</td>
<td>0.1649</td>
<td>5.428</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>SCH40</td>
<td>73.025</td>
<td>5.156</td>
<td>62.713</td>
<td>30.889</td>
<td>10.993</td>
<td>0.2294</td>
<td>0.197</td>
<td>8.607</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>SCH40</td>
<td>88.9</td>
<td>5.486</td>
<td>77.928</td>
<td>47.696</td>
<td>14.368</td>
<td>0.2793</td>
<td>0.2448</td>
<td>11.255</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>SCH40</td>
<td>114.3</td>
<td>6.02</td>
<td>102.26</td>
<td>82.13</td>
<td>20.478</td>
<td>0.3591</td>
<td>0.3213</td>
<td>16.033</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>SCH40</td>
<td>141.3</td>
<td>6.553</td>
<td>128.194</td>
<td>129.07</td>
<td>27.747</td>
<td>0.4439</td>
<td>0.4027</td>
<td>21.718</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>SCH40</td>
<td>168.275</td>
<td>7.112</td>
<td>154.051</td>
<td>186.389</td>
<td>36.009</td>
<td>0.5287</td>
<td>0.484</td>
<td>28.191</td>
<td></td>
</tr>
</tbody>
</table>

Se pueden considerar dos modos de operación del barco fundamentales en los que intervienen los motores principales.
Las condiciones de funcionamiento las tomaremos del balance eléctrico del buque. En los modos de puerto nos encontramos que los motores principales están parados por lo que escogeremos uno de los modos de operación en los que se encuentren en marcha. Del balance eléctrico obtenemos los modos de operación, y en la tabla 19 aparecen seleccionados los dos modos en los que los motores principales están en marcha.

Pero en modo de Navegación Normal son los alternadores de cola los que suministran la potencia eléctrica a la planta y los motores auxiliares estarían parados. Escogeremos para el estudio el denominado modo de Maniobra, en el que participan los motores propulsores y los motores auxiliares. En la figura se muestra, resumido, un cuadro de los consumidores en cada tipo de operación, extraído del balance eléctrico.

**Tabla 19**

<table>
<thead>
<tr>
<th>Denominación</th>
<th>MANEUVRING</th>
<th>NAVIGATION AT SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternador</td>
<td>Alternador</td>
<td>Alternador</td>
</tr>
<tr>
<td>MAIN AND AUXILIARY ENGINES SERVICES</td>
<td>317,50</td>
<td>361,50</td>
</tr>
<tr>
<td>MACHINERY AUXILIARY SERVICES</td>
<td>55,54</td>
<td>88,13</td>
</tr>
<tr>
<td>MANEUVRING AUXILIARY SERVICES</td>
<td></td>
<td>200,00</td>
</tr>
<tr>
<td>LOADING AUXILIARY SERVICES</td>
<td>374,49</td>
<td>336,00</td>
</tr>
<tr>
<td>VENTILATION SERVICES</td>
<td>247,30</td>
<td>381,91</td>
</tr>
<tr>
<td>AIR CONDITIONED AND HEATING</td>
<td>414,80</td>
<td>14,80</td>
</tr>
<tr>
<td>LIGHTING SERVICES</td>
<td>190,00</td>
<td>16,65</td>
</tr>
<tr>
<td>AUTOMATION AND SPECIAL SERVICES</td>
<td>13,30</td>
<td>13,30</td>
</tr>
<tr>
<td>RADIO AND NAVIGATION EQUIPMENT</td>
<td>14,90</td>
<td>14,90</td>
</tr>
<tr>
<td>COOKING SERVICES</td>
<td>102,25</td>
<td>15,03</td>
</tr>
<tr>
<td>WORKSHOP SERVICES</td>
<td>18,40</td>
<td>45,30</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1800</td>
<td>1980</td>
</tr>
</tbody>
</table>

**2.1. NAVEGACIÓN NORMAL**

Para el caso de navegación normal se considera que los motores auxiliares se encuentran parados y la alimentación eléctrica se obtiene de los alternadores de cola.
En esta condición vemos un consumo eléctrico de 1980 kW, como consumo máximo. Esto se repartirá en 990 kW para cada alternador. Esta potencia habría que sumarla a la necesaria para la propulsión.

Podríamos considerar que en condiciones de navegación normal y con esta carga eléctrica los motores principales se encontrarían funcionando a un régimen de carga alrededor del 85%. Para la obtención de los datos de consumo recuperamos la tabla de consumos de los motores principales, tabla 6.

<table>
<thead>
<tr>
<th>Carga %</th>
<th>g/kWh</th>
<th>kg/h</th>
<th>kg/h tolerancia</th>
<th>l/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>176</td>
<td>1584</td>
<td>1695</td>
<td>1710,4</td>
</tr>
<tr>
<td>85%</td>
<td>175</td>
<td>1338,75</td>
<td>1432,5</td>
<td>1445,5</td>
</tr>
<tr>
<td>75%</td>
<td>177</td>
<td>1194,75</td>
<td>1278,4</td>
<td>1290</td>
</tr>
<tr>
<td>50%</td>
<td>184</td>
<td>828</td>
<td>886</td>
<td>894</td>
</tr>
</tbody>
</table>

De modo que para la operación en navegación normal con carga de los motores al 85% tenemos un consumo de 1445,5 l/h cada motor.

Este combustible lo suministra el módulo de combustible, uno a cada motor.

### 2.2. Maniobra

Para el modo de operación en Maniobra los generadores estarán conectados y los alternadores de cola alimentarán a las hélices transversales de maniobra.

En esta condición la potencia eléctrica la suministran los motores auxiliares. Del balance eléctrico vemos que el consumo se calcula entorno a 1800 kW que podríamos repartir entre dos o tres generadores.
Recuperando la tabla 7, de consumos de los motores auxiliares podremos calcular el consumo de combustible para el caso de la carga actual.

<table>
<thead>
<tr>
<th>Carga</th>
<th>g/kWh</th>
<th>kg/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>190</td>
<td>216,5</td>
</tr>
<tr>
<td>85%</td>
<td>189</td>
<td>183</td>
</tr>
<tr>
<td>75%</td>
<td>190</td>
<td>162,5</td>
</tr>
<tr>
<td>50%</td>
<td>198</td>
<td>113</td>
</tr>
</tbody>
</table>

Para el caso de dos alternadores el reparto deja 900kW para cada uno, el motor estaría trabajando con un porcentaje de carga en torno al 85% de la potencia mecánica si se tienen en cuenta las pérdidas.

\[
\% carga = \frac{900}{1100} \times 100\% \approx 82\%
\]

Para esta situación el consumo específico que anuncia Caterpillar es de 189-190g/kWh. Si hacemos el cálculo para obtener el consumo de combustible

\[
190 g/kWh \times 900 kW = 171 kg/h + 7\% = 183 kg/h \times 0,991 m^3/kg = 184 l/h
\]

Este es el consumo de cada motor; para dos motores

\[
184 l/h \times 2 = 368 l/h
\]

Si hacemos el cálculo para el caso de tener tres motores auxiliares en marcha, el reparto de potencia eléctrica sería de 600kW para cada uno. En este caso cada motor estaría funcionando en un régimen entorno al 55%

\[
\% carga = \frac{600}{1100} \times 100\% = 54,5\% \approx 55\%
\]
De la tabla de consumos específicos vemos que para esta condición de carga el consumo específico se sitúa en valores en torno a 198 g/kWh.

Si hacemos el cálculo para obtener el consumo de combustible

\[ 198 \frac{g}{kWh} \times 600 kW = 119 \frac{kg}{h} + 7\% = 127 \frac{kg}{h} \times 0,991 \frac{m^3}{kg} = 128,5 \frac{l}{h} \]

Este es el consumo de cada motor; para tres motores

\[ 128,5 \frac{l}{h} \times 3 = 385,5 \frac{l}{h} \]

Cantidad que suministraría la bomba de circulación de un módulo de combustible.

Para los motores principales en el modo de operación de maniobra, teniendo en cuenta que es una situación de carga variable, tanto por la constante variación del régimen de potencia de los motores por la carga de las hélices de paso variable como por la potencia eléctrica que consumen las hélices transversales, consideraremos para los efectos de cálculo una carga media de los motores de 50%.

Para esta situación el consumo, extraído de la tabla es de 894 l/h.

En resumen

<table>
<thead>
<tr>
<th>Consumo</th>
<th>Maniobra</th>
<th>Navegación</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMAA</td>
<td>370 l/h</td>
<td>-</td>
</tr>
<tr>
<td>MMPP</td>
<td>890 l/h cada uno</td>
<td>1445 l/h cada uno</td>
</tr>
</tbody>
</table>

A continuación se muestran esquemáticamente en la figura 55 y 56, los consumos para cada tipo de operación. Diferenciando en cada esquema el módulo de combustible de babor y el módulo de estribor.
En la Navegación normal, los motores auxiliares estarían parados pero las bombas de circulación de auxiliares permanecen en marcha, alimentando combustible que al no haber consumo retorna al tanque de mezcla del módulo.

Por el caudal que suministran estas bombas de circulación sólo es necesario un módulo para alimentar los motores auxiliares, incluso con tres motores en funcionamiento.

Los motores principales están alimentados por un módulo cada uno.

En Maniobra, existe consumo de los motores auxiliares y el retorno al módulo es menor, y mayor en el caso de los motores principales al disminuir el consumo.

![Operación Navegación](image-url)

Fig.55
2.3. **ESTUDIO DEL MODO MANIOBRA**

En este tipo de operación los dos motores principales estaban en marcha, con los alternadores de cola acoplados a las hélices de maniobra y los motores auxiliares proporcionando toda la potencia eléctrica.

Se demostró que para el consumo eléctrico en maniobra es suficiente con tener en marcha dos motores auxiliares, que al trabajar con una carga superior que en caso de repartirla entre tres, funcionarían también en un punto de mayor rendimiento como se puede ver en la tabla de consumos específicos, tabla 7.

Se muestran los circuitos de motor principal de babor y de estribor por separado y todos los elementos que afectan al circuito de cada uno y después el circuito que alimenta a los motores auxiliares.
Además cada motor principal lleva instalado un filtro doble fino, de malla 0,034mm, HF1, que es el último elemento que podría afectar a la carga antes de entrar el combustible en el motor.

2.3.1. MÓDULO DE COMBUSTIBLE

Si tomamos de nuevo el esquema de tubería del módulo de combustible se observa que el primer elemento es un filtro doble situado en la aspiración de las bombas de alimentación.

Manteniendo estos filtros limpios no se producirán problemas de aspiración en las bombas SP1 y consideraremos que mueven el caudal nominal. Este gráfico de la figura 58 muestra los datos de pérdida de carga, en este caso para caudales máximos de 5,1 m$^3$/h y con un diámetro en la entrada de DN50 nos da una velocidad inferior a 1m/s.
Este caudal es el que mueven las bombas de alimentación. Los datos de la bomba los obtenemos de las definiciones del módulo de combustible.

5,1 m³/h y 0,4MPa

El siguiente elemento es el filtro automático AF1 del cual se explica su funcionamiento en el apartado del módulo de combustible. El fabricante Boll & Kirch da un gráfico de pérdida de carga para combustible pesado, mostrado en la figura 59

Para el caudal máximo que moverán las bombas de alimentación, que será de 5,1 m³/h, el dato de pérdida de carga será de 0,03 bar aproximadamente.
El medidor de flujo FLOW 1 es el siguiente accesorio en la línea. El fabricante nos da la siguiente curva para la obtención de la pérdida de carga. En este caso se trata del elemento de DN40.

Siendo las diferentes curvas las correspondientes a las siguientes viscosidades:

- A – 5 mPa.s
- B – 25 mPa.s
- C – 50 mPa.s
- D – 100 mPa.s
- E – 200mPa.s
- F – 500 mPa.s

Para el cálculo en este caso se toma la temperatura del tanque diario de fuel oil, tal como recomienda el fabricante de los motores, en unos 95 ºC. Para esa temperatura podremos obtener de la gráfica de temperatura-viscosidades que suministra Mak y aparece en el anexo. De este modo obtenemos un valor de viscosidad aproximado de 40cSt.

Con un combustible como el que se utiliza RMH35, IFO 380 de densidad 991 kg/m³.

\[ 40cSt = 40 \text{ mm}^2/\text{s} \times 1\text{ m}^2/10^6 \text{ mm} \times 991\text{ kg/m}^3 = 0,039 \text{ Pa.s} = 39\text{ mPa.s} \]

Siguiendo en la gráfica de pérdida de carga del medidor de caudal de la figura 60 obtenemos una pérdida aproximada entre 4-5 mbar.
El tanque de mezcla T1 lo considerábamos a los efectos de pérdida de carga como un depósito y únicamente podríamos tener en cuenta las pérdidas que se originan en la entrada de la tubería a la salida del tanque, considerándolo como reducción brusca, y no considerando las pérdidas en la entrada.

A partir de la gráfica se puede calcular el valor del coeficiente, o mediante el cálculo con la fórmula experimental.

\[ K_c \approx 0,42 (1 - \frac{d^2}{D^2}) \]
Que nos da para el diámetro de la tubería de descarga de DN50 comparado con el tamaño del depósito un valor \( K_c \approx 0.4 \)

Siguiendo aguas abajo están las bombas de circulación de motores principales y motores auxiliares, nombradas BP1/BP2 y BP3/BP4 en la figura 62

Las bombas aportan energía al fluido y del apartado donde se analiza el módulo de combustible tenemos los datos de las descargas de ambas bombas.
Las bombas de circulación de motores principales aportan

10,5 m³/h y una altura correspondiente a 0,95MPa.

nuevamente energía al fluido, en este caso con los siguientes datos:

La descarga de las bombas de circulación lleva al combustible a pasar por los calentadores de vapor. Estos, que son dos y pueden funcionar en paralelo o en serie, los consideraremos como en el caso del tanque de mezcla como depósitos finitos solo le afecta el coeficiente de pérdidas por reducción brusca.

\[ K_c \approx 0,4 \]

Y funcionando los calentadores en serie, el fluido descarga del primero al segundo.

Los calentadores H1 y H2 son intercambiadores que aportan energía al fluido. Esta energía, en forma de calor, es necesario tenerla en cuenta en la ecuación de la energía.

Si tomamos \( c_v \) para el fuel oil pesado: \( c_v = 1,7 \) kJ/kgK

Podemos calcular que para un aumento de temperatura de alrededor de 40°C en el intercambiador tenemos un aporte:
Este caudal pasa posteriormente por el viscosímetro donde la pérdida de carga en el accesorio la calcularemos utilizando un factor $K = 3$.

El último elemento del módulo de combustible es el tanque de compensación $T_2$, por el que no circula el fluido y no tendremos en cuenta para el cálculo de pérdidas por fricción.

Las bombas de circulación del circuito de motores auxiliares aportan altura al caudal de $3,2 \text{ m}^3/\text{h}$ que mueven, siendo este aporte $0,85\text{MPa}$

Igual que en el circuito de motores principales, las bombas descargan a los calentadores, en este caso eléctricos. Se trata también de intercambiadores de tubo y los consideraremos depósitos con un factor de pérdidas por reducción brusca con un factor $K_c = 0,4$

Trabajaremos con estos calentadores también en serie, y el aporte de energía es igual al de los calentadores de vapor del circuito de motores principales, con lo que la energía suministrada al fluido:

$$h_q = \frac{c_v(\Delta T)}{g} = \frac{1,7\frac{kJ}{kg\cdot{K}}(40K)}{g} = 6,9 \text{ m}$$

El viscosímetro es el mismo que el montado en el circuito de motores principales, con el valor de pérdida de carga calculado con un coeficiente $K = 3$.

Como en la línea de principales, el tanque de compensación $T_3$ no influye para el cálculo de fluído.

Conociendo las condiciones de flujo dentro del módulo de combustible se puede realizar el cálculo completo de la pérdida de carga partiendo nuevamente de los tipos de operación que se consideran, Modo de Maniobra y Modo de Navegación Normal.

Conociendo el modo de funcionamiento y los elementos que entran en juego en el módulo se puede realizar el análisis de pérdida de carga.
2.3.2. CIRCUITO DE MMPP

Tomaremos en primer lugar el circuito que alimenta los motores principales y partiremos con el análisis de las bombas de circulación BP1/2.

Habrá una bomba en funcionamiento y las líneas por las que circula el combustible los podemos identificar en el siguiente esquema de la Figura 63.

Enumeradas las líneas serán las siguientes:

6034, 6037, 6038, 6039, 6043 y 6045

Y todos los elementos y accesorios que comprenden estas líneas, codos, tes, los calentadores y el viscosímetro.

Seleccionando estas líneas en el modelo tridimensional se obtiene una vista del módulo con la tubería y de aquí se extraen las isométricas de tubería para realizar el cálculo final.

Partiendo de las isométricas se obtienen los datos de longitud de tubería y cantidad de accesorios, codos, tes, etc, que están montados en esta línea de alimentación a motores principales dentro del módulo.

La siguiente tabla 21 muestra todos los elementos.

La tabla está formada por todos los tramos de tubería en que se dividen las isométricas, y la longitud de cada tramo.

De la descripción del módulo de combustible sabemos que las bombas de circulación de MMPP impulsan 10,5 m³/h, de donde obtenemos para la tubería de descarga de estas bombas la velocidad del fluido.

\[
V = \frac{Q}{A} = \frac{10.5 \text{m}^3/\text{h}}{\frac{\pi (0.0525)^2}{4}} = 1.34 \text{ m/s}
\]
Haciendo el cálculo con el diámetro interior de una tubería de DN25, obtenido de las dimensiones de la tubería según la norma.

Obtenemos Reynolds, teniendo en cuenta la viscosidad para la temperatura del combustible procedente del tanque de mezcla, unos 25cSt.

\[
Re = \frac{VD}{v} = \frac{1,34 \ m/s}{0,00525 \ m} = 2,5 \ 10^6 \ \text{m}^2/s
\]

\[
\frac{m^2}{s} = 2829
\]
<table>
<thead>
<tr>
<th>Línea</th>
<th>tipo acc</th>
<th>DN</th>
<th>D int</th>
<th>Cant</th>
<th>Longitud</th>
<th>Variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q m³/h</th>
<th>Visc</th>
<th>Rugo rel</th>
</tr>
</thead>
<tbody>
<tr>
<td>6034-1</td>
<td>val retenci</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6034-1</td>
<td>val bola</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6034-1</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>160</td>
<td>0</td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6034-1</td>
<td>codo largo</td>
<td>50</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0,38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6034-1</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>698</td>
<td>0</td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-1-1</td>
<td>codo largo</td>
<td>50</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-1-1</td>
<td>codo largo</td>
<td>50</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-1-2</td>
<td>codo corto</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-1-2</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>1520</td>
<td>-551</td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-2</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>52</td>
<td>0</td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-2</td>
<td>codo corto</td>
<td>50</td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-10</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>40</td>
<td>-40</td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-4</td>
<td>codo corto</td>
<td>50</td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-5</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td></td>
<td></td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-6</td>
<td>codo corto</td>
<td>50</td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-7</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>113</td>
<td>113</td>
<td></td>
<td>0,0226</td>
<td>1,3473</td>
<td>2829,41</td>
<td>10,5</td>
<td>25</td>
<td>0,001714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6037-8</td>
<td>codo corto</td>
<td>50</td>
<td>1</td>
<td>80</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tab.21</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td></td>
</tr>
<tr>
<td><img src="image-url" alt="Image of the table" /></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>long tubería</th>
<th>elevación total</th>
<th>sum k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2903</td>
<td>-478</td>
<td>4,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10,5</td>
</tr>
</tbody>
</table>

H1 calentador -950 2,2 0,4 10,5

<p>| 6038-11 codo corto 50 1 80 0,24 10,5 |
|---------------------|-------------|-------|---|-----|
| 6038-10 tubería 50 52,5 113 113 0,0369 1,3473 6430,49 10,5 11 0,001714 |
| 6038-9 codo corto 50 1 80 0,24 10,5 |
| 6038-8 tubería 50 52,5 170 0 0,0369 1,3473 6430,49 10,5 11 0,001714 |
| 6038-7 codo corto 50 1 80 0,24 10,5 |
| 6038-6 te 50 1 80 1,4 10,5 |
| 6038-5 tubería 50 52,5 1892 1324 0,0369 1,3473 6430,49 10,5 11 0,001714 |
| 6038-5 codo corto 50 4 0,96 10,5 |
| 6038-4 tubería 50 52,5 352 106 0,0369 1,3473 6430,49 10,5 11 0,001714 |
| 6038-4 codo corto 50 3 0,72 10,5 |
| 6038-3 tubería 50 52,5 371 -371 0,0369 1,3473 6430,49 10,5 11 0,001714 |</p>
<table>
<thead>
<tr>
<th>Tab.21</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6038-2</td>
<td>codo corto</td>
</tr>
<tr>
<td>H2</td>
<td>calentador</td>
</tr>
<tr>
<td>6039-3</td>
<td>codo corto</td>
</tr>
<tr>
<td>6039-2</td>
<td>tubería</td>
</tr>
<tr>
<td>6039-2</td>
<td>codo corto</td>
</tr>
<tr>
<td>6039-1-1</td>
<td>codo corto</td>
</tr>
<tr>
<td>6039-1-1</td>
<td>tubería</td>
</tr>
<tr>
<td>6039-1-2</td>
<td>codo corto</td>
</tr>
<tr>
<td>6039-1-2</td>
<td>tubería</td>
</tr>
<tr>
<td>6039-1-3</td>
<td>codo corto</td>
</tr>
<tr>
<td>6039-1-3</td>
<td>tubería</td>
</tr>
<tr>
<td>VA1</td>
<td>Viscosimetro</td>
</tr>
<tr>
<td>6043-2</td>
<td>codo corto</td>
</tr>
<tr>
<td>6043-2</td>
<td>tubería</td>
</tr>
<tr>
<td>6043-2</td>
<td>exp 50 a 65</td>
</tr>
<tr>
<td>6043-2</td>
<td>te</td>
</tr>
</tbody>
</table>

<p>| 10764 | 990 | 13,169 | 10,5 |
| long | tubería | elevacion | total | sum k |</p>
<table>
<thead>
<tr>
<th>Tab.21</th>
</tr>
</thead>
</table>
| \( h \)
| \( \text{tot=} hf+hm= \) 1,91844914 |

| tubería | 65 | 62,7 | 732 | 0 | 0,0369 | 0,9446 | 5384,38 | 10,5 | 11 | 0,001435 |

| codo corto | 65 | 1 | 732 |
| codo corto | 65 | 10,5 |

| long tubería | elevacion total | sum k |
| 65 | 10,5 | 0,019592621 |
Este valor de Reynolds tan bajo, el flujo lo consideramos laminar en esta zona, por lo que el coeficiente para la ecuación de Darcy lo obtenemos del cálculo según:

\[ f = \frac{64}{Re} \]

El primer tramo de tubería comprende desde la descarga de la bomba de circulación hasta los calentadores. Tenemos aquí una longitud total de 2,903 m y una elevación del tramo de tubería de 0,478 m hacia arriba.

Obtenemos también el valor total de pérdidas por fricción y pérdidas menores de la siguiente manera:

\[ h_{tot} = h_f + \Sigma h_m = \frac{v^2}{2g} \left( f \frac{L}{D} + \Sigma K \right) \]

Dado que las dos dependen de la velocidad.

En los calentadores hay un aporte de energía por calor que podemos calcular teniendo en cuenta el calor específico de un fuel oil pesado.

\[ q = c_v \Delta T \quad h_q = \frac{q}{g} \]

En este tramo de los calentadores se hace necesario repetir los cálculos de número de Reynolds y factor de pérdidas por fricción puesto que debido al aporte de calor hay una variación de temperatura que implica variación de viscosidad.

El número de Reynolds ahora es superior a 4000 por lo que el valor del factor de fricción de la fórmula de Darcy lo obtendremos del diagrama de Moody, con los valores de rugosidad relativa que indica la tabla, con valores de rugosidad absoluta en torno a 0,09 mm para tuberías comerciales de acero sin soldadura.

Añadimos las pérdidas de carga que se producen en la entrada y salida del depósito, por las tuberías y por los accesorios. Todo suma un coeficiente de pérdidas de K=13,17, que introducido en la ecuación:

\[ h_{tot} = h_f + \Sigma h_m = \frac{v^2}{2g} \left( f \frac{L}{D} + \Sigma K \right) = 1,918 \, m \]
En la última parte del recorrido se produce un ensanchamiento de la tubería variando el diámetro de DN50 a DN65, lo que produce una variación de velocidad de flujo en la tubería de una longitud de 0,732m sin variación de cota vertical.

Para el cálculo de la pérdida de carga en esta parte del circuito de alimentación aplicamos la ecuación de energía entre el punto de descarga de la bomba de circulación, donde conocemos las condiciones de caudal y presión de descarga, y el punto de salida del módulo, donde conecta con la que consideramos la línea de alimentación del motor principal.

\[
\frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 + h_q = \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 + h_{tot}
\]

Entre el punto de inicio y el final hay \(\Delta Z=0,512\)m

La suma de todos los factores de pérdidas da \(\sum h_{tot} = 2,455\)

La presión que descarga la bomba de circulación, \(P_1 = 9 \times 10^5\) Pa

Del cálculo se obtiene la presión:

\[
\frac{p_2}{\rho g} = \frac{p_1}{\rho g} + \frac{(v_1^2-v_2^2)}{2g} + (z_1 - z_2) - h_{tot} = P_1 + \rho \frac{0.9}{2} + \rho g (\Delta z - h_{tot})
\]

\[
P_2 = P_1 + \rho \frac{0.9}{2} + \rho g (\Delta z - h_{tot}) = 9 \times 10^5 + 448,16 - 18882,28
\]

\[
P_2 = 8,815 \times 10^5\] Pa

Presión en el punto de salida del módulo en la línea de alimentación del motor principal.

Este valor es el mismo en los dos módulos dado que las bombas y los circuitos son idénticos.
2.3.3. CIRCUITO DE MMAA

Para el circuito de alimentación de MMAA dentro del módulo se hace un estudio similar.

Obtenidas las isométricas y organizadas en la tabla se calculan los coeficientes de pérdidas, los aportes de energía y la longitud de tubería total.

Se procede como en el caso anterior, partiendo de la tabla 22, completada tomando los datos de la misma forma que en la anterior.

Si aquí se aplica la ecuación de energía:

\[
\frac{P_1}{\rho g} + \frac{v_1^2}{2g} + z_1 + h_q = \frac{P_2}{\rho g} + \frac{v_2^2}{2g} + z_2 + h_{tot}
\]

\[
\frac{P_2}{\rho g} = \frac{P_1}{\rho g} + \frac{(v_1^2-v_2^2)}{2g} + (z_1 - z_2) - h_{tot} = P_1 + \rho \frac{0.9}{2} + \rho g(\Delta z - h_{tot})
\]

\[
P_2 = P_1 + \rho \frac{2.1}{2} + \rho g(\Delta z - h_{tot}) = 9 \times 10^5 + 1044.05 - 24800.08
\]

\[
P_2 = 8.76 \times 10^5 \text{ Pa}
\]

Esta es la presión en el último punto de la línea de alimentación de auxiliares
<table>
<thead>
<tr>
<th>Línea</th>
<th>tipo acc</th>
<th>DN</th>
<th>D int</th>
<th>Cant</th>
<th>Longitud</th>
<th>variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q ( m^3/h )</th>
<th>Visc</th>
</tr>
</thead>
<tbody>
<tr>
<td>6020-1</td>
<td>val bola</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6020-1</td>
<td>val retención</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>2,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6020-1</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>293</td>
<td>293</td>
<td></td>
<td>0,0376</td>
<td>1,5995</td>
<td>1701,90</td>
<td>3,2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-1</td>
<td>codo</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-1</td>
<td>codo largo</td>
<td>25</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>0,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-1</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>1009</td>
<td>-252</td>
<td></td>
<td>0,0376</td>
<td>1,5995</td>
<td>1701,90</td>
<td>3,2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-2</td>
<td>codo</td>
<td>25</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-2</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>82</td>
<td>0</td>
<td></td>
<td>0,0376</td>
<td>1,5995</td>
<td>1701,90</td>
<td>3,2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-3</td>
<td>codo</td>
<td>25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6023-3</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>246</td>
<td></td>
<td></td>
<td>0,0376</td>
<td>1,5995</td>
<td>1701,90</td>
<td>3,2</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| h tot = hf+hm= | 0,786899169 | 3,73 |

H3 calentador: -750 - 0,4 3,2
<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo</th>
<th>Diámetro</th>
<th>Longitud</th>
<th>Espesor</th>
<th>Temperatura</th>
<th>Resistencia</th>
<th>Velocidad</th>
<th>Temperatura</th>
<th>Resistencia</th>
<th>Velocidad</th>
<th>Temperatura</th>
<th>Resistencia</th>
<th>Velocidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>6024-4</td>
<td>codo</td>
<td>25</td>
<td>2</td>
<td>4,8</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6024-4</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>246</td>
<td>0</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
</tr>
<tr>
<td>6024-3</td>
<td>codo</td>
<td>25</td>
<td>2</td>
<td>4,8</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6024-3</td>
<td>te</td>
<td>25</td>
<td>2</td>
<td>3,6</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6024-3</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>1107</td>
<td>927</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
</tr>
<tr>
<td>6024-2</td>
<td>codo</td>
<td>25</td>
<td>3</td>
<td>0,72</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6024-2</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>568</td>
<td>-322</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
</tr>
<tr>
<td>H4</td>
<td>calentador</td>
<td></td>
<td></td>
<td>-750</td>
<td>2,2</td>
<td>0,4</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6025-1</td>
<td>codo</td>
<td>25</td>
<td>5</td>
<td>1,2</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6025-1</td>
<td>te</td>
<td>25</td>
<td>1</td>
<td>1,8</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6025-1</td>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>2375</td>
<td>-117</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
</tr>
<tr>
<td>VA2</td>
<td>Viscosímetro</td>
<td>25</td>
<td></td>
<td>3</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>6029-2</td>
<td>codo</td>
<td>25</td>
<td>1</td>
<td>0,24</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>tubería</td>
<td>25</td>
<td>26,6</td>
<td>1267</td>
<td>-103</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
</tr>
<tr>
<td>exp 25-40</td>
<td>25</td>
<td>26,6</td>
<td>11</td>
<td>0,33</td>
<td>3,2</td>
<td>1,5995</td>
<td>3867,96</td>
<td>11</td>
<td>0,0165</td>
<td>1,5995</td>
<td>3867,96</td>
<td>3,2</td>
<td>11</td>
</tr>
<tr>
<td>tubería</td>
<td>elevación total</td>
<td>sum k</td>
<td>5563</td>
<td>-1115</td>
<td>12,65</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| h tot= hf+hm= | 2,100843421 |

<table>
<thead>
<tr>
<th>tubería</th>
<th>elevación total</th>
<th>sum k</th>
<th>6029-2</th>
<th>codo</th>
<th>40</th>
<th>1</th>
<th>0,24</th>
<th>3,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6029-2</td>
<td>tubería</td>
<td>40</td>
<td>41</td>
<td>1470</td>
<td>1470</td>
<td>0,0255</td>
<td>0,6733</td>
<td>2509,46</td>
</tr>
<tr>
<td>6029-1</td>
<td>codo</td>
<td>40</td>
<td>2</td>
<td>0</td>
<td>398</td>
<td>0</td>
<td>0,0255</td>
<td>0,6733</td>
</tr>
<tr>
<td>6031</td>
<td>tubería</td>
<td>40</td>
<td>41</td>
<td>398</td>
<td>0</td>
<td>0</td>
<td>0,0255</td>
<td>0,6733</td>
</tr>
</tbody>
</table>

| h tot= hf+hm= | 0,062306417 |
Estos dos valores son la presión en el módulo de combustible antes de conectarse a las líneas que suministran a los MMPP y MMAA.

De este modo tenemos:

- Presión en la descarga hacia MMPP: \(8,815 \times 10^5\) Pa
- Presión en la descarga hacia MMAA: \(8,76 \times 10^5\) Pa

La figura 64 muestra estos puntos de conexión.

De estos puntos parten el resto de tubería sometida a estudio, la que alimenta combustible a motores principales y la que lo hace a auxiliares.

Tomaremos en primer lugar el circuito de alimentación de motores principales, que estará dividido en dos, motor principal de babor y motor principal de estribor.
2.4. CIRCUITO DE ALIMENTACIÓN DEL MOTOR PRINCIPAL DE BABOR

En la imagen de figura 65 se ve la trayectoria que sigue la tubería de la línea de alimentación hasta el filtro de entrada en el motor.

El circuito de alimentación cubre las líneas que se pueden ver en el esquema de la figura 66, donde se toma del circuito completo de alimentación de combustible sólo la parte que afecta al suministro de este motor.

Extrayendo las isométricas de estas líneas, podemos, como en los casos anteriores, identificar los metros de tubería, el desnivel, el tipo y cantidad de accesorios y válvulas para realizar el cálculo.

Se incluye en la tabla 23 las isométricas con los datos calculados de velocidad, número de Reynolds y coeficientes de fricción.

Las líneas son las nombradas 1211, 1212, 1214, 1215 y 1216.

Aplicamos también la ecuación de la energía entre el punto de conexión a la salida del módulo y el punto final de la línea 1216, que es la conexión del filtro fino del motor.
En el apartado anterior se había calculado la presión a la salida del módulo, donde teníamos 0,8815 MPa. Tomaremos esta como la presión $P_1$ en el cálculo y obtendremos $P_2$ en el filtro.

El caudal es el que impulsa la bomba de circulación BP1, 10,5 m$^3$/h.

Conociendo la tubería obtenemos la velocidad a la que circula el fluido por la línea en cada tramo. Con estos datos se calcula Re.
Fig. 66
<p>| Línea | tipo acc | DN | D int | Cant | Longitud | variac cota Z | hf | hm | K | f | V m/s | Re | Q m³/h | Visc | Rug relat |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1211 | codo largo 90 | 65 | 1 | | | | 0,19 | | | | | | | | | |
| 1211 | codo 45 | 65 | 2 | | | | 0,18 | | | | | | | | | |
| 1211 | tubería | 65 | 62,7 | | 2354 | 244 | | 0,0382 | 0,945 | 5384,38 | 10,5 | 11 | 0,00144 |
| 1211 | vál globo | | | | | | 7 | | | | | | | | | |
| 1212-2 | codo 90 | 65 | 3 | | | | 0,72 | | | | | | | | | |
| 1212-2 | tubería | 65 | 62,7 | | 9861 | | -4761 | 0,0382 | 0,945 | 5384,38 | 10,5 | 11 | 0,00144 |
| 1212-3 | reduc 65-50 | 65 | 1 | | | | | | | | | | | | | |
| 12215 | | | | | | | | | | | | | | | |
| 12215 | long tubería | 65 | | | | | | | | | | | | | |
| 8,19 | elevación total | | | | | | | | | | | | | | |
| 0,710946639 | | | | | | | | | | | | | | |
| 1212-3 | tubería | 50 | 52,5 | 1424 | -1424 | | 0,0369 | 1,347 | 6430,49 | 10,5 | 11 | 0,00171 |
| 1212-1-2 | codo 90 | 50 | 5 | | | | 1,2 | | | | | | | | | |
| 1212-1-2 | tubería | 50 | 52,5 | 13382 | | 5330 | | 0,0369 | 1,347 | 6430,49 | 10,5 | 11 | 0,00171 |
| 1212-1-1 | codo 90 | 50 | 3 | | | | 0,72 | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo</th>
<th>Diámetro</th>
<th>Longitud</th>
<th>Elevación</th>
<th>Diferencia</th>
<th>Peso</th>
<th>Pérdida</th>
<th>Longitud Elevación Total</th>
<th>Pérdida Elevación Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1212-1-1</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>5452</td>
<td>954</td>
<td>0,0369</td>
<td>1,347</td>
<td>6430,49</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>vál globo</td>
<td></td>
<td></td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1212-1-1</td>
<td>codo 90</td>
<td>50</td>
<td>2</td>
<td>10,5</td>
<td></td>
<td>0,00171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214-1-1</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>747</td>
<td>-539</td>
<td>0,0369</td>
<td>1,347</td>
<td>6430,49</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>vál 3 vias</td>
<td></td>
<td></td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214-1-1</td>
<td>codo 90</td>
<td>50</td>
<td>2</td>
<td>10,5</td>
<td></td>
<td>0,00171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214-2</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>974</td>
<td>334</td>
<td>0,0369</td>
<td>1,347</td>
<td>6430,49</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>vál globo</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1214-2</td>
<td>codo 90</td>
<td>50</td>
<td>1</td>
<td>10,5</td>
<td></td>
<td>0,00171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>482</td>
<td>-177</td>
<td>0,0369</td>
<td>1,347</td>
<td>6430,49</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>vál globo</td>
<td></td>
<td></td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td>codo 90</td>
<td>50</td>
<td>1</td>
<td>10,5</td>
<td></td>
<td>0,00171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1215</td>
<td>codo 90</td>
<td>50</td>
<td>1</td>
<td>10,5</td>
<td></td>
<td>0,00171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1216</td>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>50</td>
<td>4478</td>
<td>24,88</td>
<td></td>
<td>3,762672153</td>
<td></td>
</tr>
<tr>
<td></td>
<td>codo 90</td>
<td>50</td>
<td>1</td>
<td>10,5</td>
<td></td>
<td>0,00171</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[ h_{tot} = h_f + h_m = 3,762672153 \]
Tabla 23
Para la tubería de DN65:

\[ V = \frac{Q}{A} = \frac{10.5 m^3/h}{\frac{0.0625\pi}{4}} = 0.945 \, m/s \]

Para la tubería de DN50:

\[ V = \frac{Q}{A} = \frac{10.5 m^3/h}{\frac{0.0525\pi}{4}} = 1.347 \, m/s \]

Así también tenemos dos Re diferentes, según el diámetro de la tubería.

\[ Re = \frac{VD}{\nu} = \frac{0.945 m^3/h \times 0.0627 m}{11 \times 10^{-6}} = 5384.38 \]

Para la tubería de DN65.

\[ Re = \frac{VD}{\nu} = \frac{1.347 m^3/h \times 0.0525 m}{11 \times 10^{-6}} = 6430.49 \]

Para la tubería de DN50.

En los dos casos el resultado un Re superior a 4000 que ya podemos considerar régimen turbulento. Por ello tendremos que utilizar el diagrama de Moody para obtener en factor de fricción \( f \).

Haciendo el cálculo de la ecuación de energía

\[ \frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_{tot} \]

\[ \frac{p_2}{\rho g} = \frac{p_1}{\rho g} + \frac{(V_2^2 - V_1^2)}{2g} + (z_1 - z_2) - h_{tot} = P_1 - \rho \frac{0.921}{2} + \rho g (\Delta z - h_{tot}) \]

\[ P_2 = P_1 - \rho \frac{0.21}{2} + \rho g (\Delta z - h_{tot}) = 8.815 \times 10^5 - 456.54 - 43893.52 \]

\[ P_2 = 8.37 \times 10^5 \text{Pa} = 0.837 \, \text{MPa} \]

Es la presión en la entrada del filtro doble, denominado HF1, del motor.

[Fig. 67]
Es un filtro de malla metálica en el que para obtener los datos de pérdida de carga habrá que sumar la pérdida que se producen en el cuerpo del filtro y la que produce el propio elemento filtrante. Figuras 68 y 69.

\[ \Delta p_{\text{total}} = \Delta p_{\text{cuerpo}} + \Delta p_{\text{elemento}} \]

Para un caudal de 10,5 m\(^3\)/h, 175 l/min, que proporcionan las bombas de circulación, las pérdidas según las curvas son:

\[ \Delta p_{\text{total}} = 0,1 + 0,5 = 0,6 \text{ bar } 0,06 \text{MPa} \]

Pérdidas en el cuerpo del filtro

![Fig. 68](image)

Pérdidas en el elemento filtrante

![Fig. 69](image)
Con este resultado se puede calcular las condiciones en las que llega en combustible a la línea de alimentación de las bombas de inyección de este motor.

\[ P_{eng} = 0.837 \text{ MPa} - 0.06 \text{ MPa} + 10\% \text{ para condiciones de suciedad} \]

\[ P_{eng} = 0.771 \text{ MPa} \]

Que es la presión final que reciben las bombas de inyección, y que se ajusta a lo que demanda el fabricante, que según sus manuales exigía 0,5MPa y velocidad inferior a 5 m/s

**2.5. CIRCUITO DE ALIMENTACIÓN DEL MOTOR PRINCIPAL DE ESTRIBOR**

La trayectoria de esta tubería se puede observar en la figura 70. A simple vista se observa que esta línea tiene mayor longitud que la anterior, aunque el número de válvulas es el mismo.

![Fig. 70](image)
En la figura 71 se muestra el esquema de tuberías con las líneas que afectan únicamente a la alimentación del motor principal de estribor.

Enumerando las líneas implicadas estas son: 1111, 1112, 1114, 1115 y 1116.

Las condiciones del fluido a la salida del módulo son exactamente las mismas que en el motor de babor y módulo de babor.

Se presenta la 24, igual que los casos anteriores con los valores de velocidad y Reynolds para cada tramo de isométrica en que se descompone la línea.
Fig. 71
<table>
<thead>
<tr>
<th>Línea</th>
<th>tipo acc</th>
<th>DN</th>
<th>int</th>
<th>Cant</th>
<th>Longitud</th>
<th>variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q m³/h</th>
<th>Visc</th>
<th>Rugosid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1111-1</td>
<td>tubería</td>
<td>65</td>
<td>62,7</td>
<td></td>
<td>2129</td>
<td>244</td>
<td>0,0382</td>
<td>0,9446</td>
<td>5384,38</td>
<td>10,5</td>
<td>11</td>
<td>0,00144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111-1</td>
<td>codo 90</td>
<td>65</td>
<td>1</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111-1</td>
<td>codo 45</td>
<td>65</td>
<td>2</td>
<td></td>
<td></td>
<td>0,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111-1</td>
<td>vál globo</td>
<td>2076</td>
<td>65</td>
<td>1</td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1111-1</td>
<td>tubería</td>
<td>65</td>
<td>62,7</td>
<td></td>
<td>10817</td>
<td>-4836</td>
<td>0,0382</td>
<td>0,9446</td>
<td>5384,38</td>
<td>10,5</td>
<td>11</td>
<td>0,00144</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112-1</td>
<td>codo 90</td>
<td>65</td>
<td>1</td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1112-1</td>
<td>reduc 65-50</td>
<td>65</td>
<td>1</td>
<td></td>
<td></td>
<td>0,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>long tubería</th>
<th>elevacion total</th>
<th>sum k</th>
</tr>
</thead>
<tbody>
<tr>
<td>12946</td>
<td>-4592</td>
<td>7,76</td>
</tr>
</tbody>
</table>

\[ h_{tot} = hf+hm = 0,711645308 \]

| 1112-2 | tubería | 50 | 52,5 | 26639 | 4851 | 0,0369 | 1,3473 | 6430,488 | 10,5 | 11 | 0,00171 |
| 1112-2 | codo 90 | 50 | 9 |  |  | 2,16 |  |  |  |  |  |  |  |  |  |
| 1112-2 | vál globo | 2132 | 50 | 1 |  | 9,5 |  |  |  |  |  |  |  |  |  |
### Tab.24

<table>
<thead>
<tr>
<th>Código</th>
<th>Código Descripción</th>
<th>Diametro</th>
<th>Longitud</th>
<th>Peso</th>
<th>Prop.</th>
<th>Densidad</th>
<th>Factor de Agotamiento</th>
<th>Factor de Debilidad</th>
<th>Factor de Costo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1114</td>
<td>tubería</td>
<td>50 52,5</td>
<td>976</td>
<td>-539</td>
<td>0,0369</td>
<td>1,3473</td>
<td>6430,488</td>
<td>10,5</td>
<td>11 0,00171</td>
</tr>
<tr>
<td>1114</td>
<td>codo 90</td>
<td>50 2</td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vál 3 vias</td>
<td>2106 50</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td>1115</td>
<td>tubería</td>
<td>50 52,5</td>
<td>1038</td>
<td>398</td>
<td>0,0369</td>
<td>1,3473</td>
<td>6430,488</td>
<td>10,5</td>
<td>11 0,00171</td>
</tr>
<tr>
<td>1115</td>
<td>codo 90</td>
<td>50 1</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>vál globo</td>
<td>2022 50</td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,5</td>
<td></td>
</tr>
<tr>
<td>1116</td>
<td>tubería</td>
<td>50 52,5</td>
<td>482</td>
<td>-177</td>
<td>0,0369</td>
<td>1,3473</td>
<td>6430,488</td>
<td>10,5</td>
<td>11 0,00171</td>
</tr>
<tr>
<td>1116</td>
<td>codo 90</td>
<td>50 1</td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>long tubería</th>
<th>elevación total</th>
<th>sum k</th>
</tr>
</thead>
<tbody>
<tr>
<td>29135</td>
<td>4533</td>
<td>25,12</td>
</tr>
</tbody>
</table>

\[ h_{tot} = h_f + h_m = 4,218897083 \]
Con el mismo caudal y los mismos diámetros de tubería las velocidades y números de Reynolds obtenidos son los mismos que para el motor de babor.

Trasladando los datos de la tabla a la ecuación de energía

\[
\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_{tot}
\]

\[
\frac{p_2}{\rho g} = \frac{p_1}{\rho g} + \frac{(V_1^2 - V_2^2)}{2g} + (z_1 - z_2) - h_{tot} = P_1 - \rho \frac{0.921}{2} + \rho g (\Delta z - h_{tot})
\]

\[
P_2 = P_1 - \rho \frac{0.21}{2} + \rho g (\Delta z - h_{tot}) = 8,815 \times 10^5 - 456,54 - 48411,11
\]

\[
P_2 = 8,32 \times 10^5 Pa = 0,832 MPa
\]

Es la presión a la entrada del filtro de combustible del motor.

Podemos calcular la presión a la salida del filtro teniendo en cuenta la pérdida de carga en el filtro y cuerpo del filtro con los datos mostrados en el cálculo del motor de babor, y añadir un 10% de pérdida de carga para el caso de ensuciamiento del filtro.

\[
P_{eng} = 0,832 MPa - 0,06 MPa + 10\% \text{ para condiciones de suciedad}
\]

\[
P_{eng} = 0,766 MPa
\]

La presión en algo menor por la mayor pérdida de carga en la línea, principalmente debido a la mayor longitud de tubería.

**2.6. CIRCUITO DE ALIMENTACIÓN DE MOTORES AUXILIARES**

Considerábamos tras analizar el balance eléctrico que se podían utilizar solamente dos motores auxiliares en el modo de maniobra, dado que suministraban la potencia suficiente.

Estudiaremos el caso para la situación en la que los motores de babor y estribor se encuentran en marcha y el central parado.

Este circuito tiene la particularidad de que un tramo es común para ambos motores y después se separan las trayectorias. Esto obliga a realizar el estudio separando tres casos, un análisis de la línea común y posteriormente el análisis...
de cada línea de alimentación de cada motor particular. Finalmente se suma la pérdida de carga de la línea común con la que suministra a cada auxiliar por separado.

La imagen de la figura 72 muestra el recorrido de la tubería.

![Fig. 72](image_url)

En la figura 73 se muestra ahora el esquema de alimentación de MMAA desde el módulo de babor, sin incluir las líneas que alimentan al motor principal.

Se observa que la tubería que es común para ambos motores viene indicada con la numeración siguiente: 1321, 1322 y 1323.

Las líneas que alimentan exclusivamente al motor de estribor son las numeradas 1325, 1326, 1327, 1328 y 1329.

Y para llegar al motor de babor es necesario recorrer las líneas 1330, 1336, 1337, 1338, 1339 y 1340.

La alimentación de auxiliar central tiene la línea 1330 común con el auxiliar de babor y el resto de líneas son las denominadas 1331, 1332, 1333, 1334 y 1335.
Calculamos y ponemos en forma de tabla los valores de velocidad, Reynolds, factores de fricción y variaciones de cota de las líneas.

Todo esto aparece en la tabla 25.
<table>
<thead>
<tr>
<th>tipo acc</th>
<th>DN</th>
<th>D int</th>
<th>Cant</th>
<th>Longitud</th>
<th>variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q m3/h</th>
<th>Visc</th>
</tr>
</thead>
<tbody>
<tr>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>118</td>
<td>0</td>
<td>0,0254</td>
<td>0,677</td>
<td>2515,59</td>
<td>3,2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expans 40-50</td>
<td>40</td>
<td>1</td>
<td>118</td>
<td>0</td>
<td>0,4</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>579</td>
<td>0</td>
<td>0,0327</td>
<td>0,411</td>
<td>1959,77</td>
<td>3,2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>codo 90</td>
<td>50</td>
<td>2</td>
<td>0,48</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vál globo 2075</td>
<td>50</td>
<td>1</td>
<td>8,5</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>818</td>
<td>310</td>
<td>0,0327</td>
<td>0,411</td>
<td>1959,77</td>
<td>3,2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>141</td>
<td>0</td>
<td>0,0327</td>
<td>0,411</td>
<td>1959,77</td>
<td>3,2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>te flujo recto</td>
<td>50</td>
<td>1</td>
<td>0,9</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>2126</td>
<td>0</td>
<td>0,0327</td>
<td>0,411</td>
<td>1959,77</td>
<td>3,2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>codo 90</td>
<td>50</td>
<td>5</td>
<td>1,2</td>
<td>3,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubería</td>
<td>50</td>
<td>52,5</td>
<td>23827</td>
<td>-6346</td>
<td>0,0327</td>
<td>0,411</td>
<td>1959,77</td>
<td>3,2</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Tabla 25*
<table>
<thead>
<tr>
<th>Codo</th>
<th>Tubería</th>
<th>Te</th>
<th>Longitud</th>
<th>Elevación total</th>
<th>Suma k</th>
<th>H tot= hf+hm=</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>50</td>
<td>4</td>
<td>14742</td>
<td>3776</td>
<td>0,0327</td>
<td>0,411 1959,77</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1</td>
<td>42233</td>
<td>-2260</td>
<td>0,9</td>
<td>12,94 0,336960586</td>
</tr>
</tbody>
</table>

**Tabla 25**

De diseño y cálculos: 135
La velocidad en la línea común viene dada por el caudal de la bomba de circulación BP3, que es de 3,2 m$^3$/h

$$V = \frac{Q}{A} = \frac{3,2m^3/h}{\pi \frac{0,0409}{4}} = 0,677 m/s \quad \text{antes de la expansión}$$

Que da un número de Reynolds bajo

$$Re = \frac{VD}{v} = \frac{0,677m^3/h \cdot 0,0409m}{11 \cdot 10^{-6}} = 2515,59$$

Y después de la expansión, con diámetro de tubería DN50, los valores de velocidad y Re son:

$$V = \frac{Q}{A} = \frac{3,2m^3/h}{\pi \frac{0,0525}{4}} = 0,411 m/s \quad Re = \frac{VD}{v} = \frac{0,411m^3/h \cdot 0,0524m}{11 \cdot 10^{-6}} = 1959,77$$

En todo este recorrido el régimen es laminar y el factor de fricción f solo depende de Re.

Realizamos el cálculo introduciendo los valores en la ecuación de la energía.

Teniendo en cuenta que la presión a la salida del módulo de combustible estaba en 0,876 MPa.

$$\frac{P_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = \frac{P_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_{tot}$$

$$\frac{P_2}{\rho g} = \frac{P_1}{\rho g} + \frac{(V_2^2 - V_1^2)}{2g} + (z_1 - z_2) - h_{tot} = P_1 - \rho \frac{0,288}{2} + \rho g (\Delta z - h_{tot})$$

$$P_2 = P_1 - \rho \frac{0,288}{2} + \rho g (\Delta z - h_{tot}) = 8,76 \cdot 10^5 + 142,7 - 1186,05$$

$$P_2 = 8,75 \cdot 10^5 Pa$$

Siguiendo aguas abajo está el ramal que alimenta al auxiliar de estribor, del cual también, a partir de la tabla 26 se pueden conocer los valores de pérdida de carga en la línea.
<table>
<thead>
<tr>
<th>Línea</th>
<th>tipo acc</th>
<th>DN</th>
<th>int</th>
<th>Cant</th>
<th>Longitud</th>
<th>variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q m3/h</th>
<th>Visc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1325-2</td>
<td>reducc 50-40</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1325-2</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>242</td>
<td>0</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1325-4</td>
<td>codo 90</td>
<td>40</td>
<td>1</td>
<td></td>
<td>80</td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1325-1</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>326</td>
<td>-326</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1325-1</td>
<td>codo 90</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>0,24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
</tr>
<tr>
<td>1325-3</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>430</td>
<td>0</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1325-3</td>
<td>vál globo 2086</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
</tr>
<tr>
<td>1326</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>450</td>
<td>0</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1326</td>
<td>vál 3 vías 2173</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1327-2</td>
<td>codo 90</td>
<td>40</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0,96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1327-2</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>3691</td>
<td>70</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1327-1</td>
<td>codo 90</td>
<td>40</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1327-1</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>25649</td>
<td>-21840</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>T 2051</td>
<td>Tanque compens</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>908</td>
<td></td>
<td></td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1328-1</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>22496</td>
<td>17459</td>
<td></td>
<td>0,0768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,224</td>
<td>833,29</td>
</tr>
<tr>
<td>1328-1</td>
<td>codo 90</td>
<td>40</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1328-2</td>
<td>codo 90</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Tab.26

<table>
<thead>
<tr>
<th>Código</th>
<th>Tipo</th>
<th>Día</th>
<th>Diámetro</th>
<th>Longitud</th>
<th>Elevación</th>
<th>Pérdidas totales</th>
<th>Pérdidas hidráulicas</th>
<th>Pérdidas de energía</th>
<th>Pérdidas de altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>1328-2</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>2744</td>
<td>2390</td>
<td>0,0768</td>
<td>0,224</td>
<td>833,29</td>
<td>1,06</td>
</tr>
<tr>
<td>1328-2</td>
<td>vál globo 2029</td>
<td>40</td>
<td>1</td>
<td></td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
</tr>
<tr>
<td>1329</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>563</td>
<td>263</td>
<td>0,0768</td>
<td>0,224</td>
<td>833,29</td>
<td>1,06</td>
</tr>
<tr>
<td>1329</td>
<td>codo 90</td>
<td>40</td>
<td>2</td>
<td></td>
<td>0,48</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
</tr>
<tr>
<td>1329</td>
<td>reducc 40-25</td>
<td>40</td>
<td>1</td>
<td></td>
<td>0,33</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>long tubería</th>
<th>elevacion total</th>
<th>sum k</th>
</tr>
</thead>
<tbody>
<tr>
<td>56671</td>
<td>-1076</td>
<td>27,68</td>
</tr>
</tbody>
</table>

\[ h_{tot} = h_f + h_m = 0,343288885 \]
El cálculo seguirá el mismo procedimiento que en los casos anteriores, e introduciendo en la ecuación de la energía los valores de la tabla, teniendo en cuenta que no hay variación de velocidad.

\[ \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_3}{\rho g} + \frac{v_3^2}{2g} + z_3 + h_{tot} \]

\[ \frac{p_3}{\rho g} = \frac{p_2}{\rho g} + (z_2 - z_3) - h_{tot} = P_2 - \rho g (\Delta z - h_{tot}) \]

\[ P_3 = P_2 + \rho g (\Delta z - h_{tot}) = 8,75 \times 10^5 - 13795,10 \]

\[ P_3 = 8,61 \times 10^5 \text{ Pa} \]

Y el mismo procedimiento para la tubería del auxiliar de babor, obtenidos los datos de la tabla 27.

\[ \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_4}{\rho g} + \frac{v_4^2}{2g} + z_3 + h_{tot} \]

\[ \frac{p_4}{\rho g} = \frac{p_2}{\rho g} + \frac{(v_2^2-v_4^2)}{2g} + (z_2 - z_4) - h_{tot} = P_2 - \rho \frac{0,015}{2} + \rho g (\Delta z - h_{tot}) \]

\[ P_4 = P_2 - \rho \frac{0,015}{2} + \rho g (\Delta z - h_{tot}) = 8,75 \times 10^5 - 14,86 - 14640,89 \]

\[ P_4 = 8,60 \times 10^5 \text{ Pa} \]

Una presión algo menor por ser la línea algo más larga.
<table>
<thead>
<tr>
<th>Línea</th>
<th>tipo acc</th>
<th>DN</th>
<th>D int</th>
<th>Cant</th>
<th>Longitud</th>
<th>variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q m3/h</th>
<th>Visc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1330-1</td>
<td>tubería</td>
<td>50</td>
<td>52,2</td>
<td>2741</td>
<td>0</td>
<td>0,0490</td>
<td>0,28</td>
<td>1305,81</td>
<td>2,12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-2</td>
<td>te flujo recto</td>
<td>50</td>
<td>80</td>
<td>0</td>
<td>0,9</td>
<td>2,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2821</td>
<td>0</td>
<td>0,9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>long tubería</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>elevacion total</td>
<td>sum k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,013695364</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1336</td>
<td>reducc 50-40</td>
<td>40</td>
<td>1</td>
<td>0,15</td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1336</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>3917</td>
<td>-357</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1336</td>
<td>codo 90</td>
<td>40</td>
<td>3</td>
<td>0,72</td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1336</td>
<td>vál globo 2085</td>
<td>40</td>
<td>9,5</td>
<td>1,06</td>
<td></td>
</tr>
<tr>
<td>1337</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>403</td>
<td>0</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1337</td>
<td>vál 3 vías 2175</td>
<td>40</td>
<td>1</td>
<td>0,72</td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1338-1</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>11115</td>
<td>-3011</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1338-1</td>
<td>codo 90</td>
<td>40</td>
<td>5</td>
<td>1,2</td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1338-2</td>
<td>codo 90</td>
<td>40</td>
<td>7</td>
<td>1,68</td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tab.27</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
<tr>
<td><strong>1338-2</strong></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>25487</td>
<td>-18728</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tk 2026</td>
<td>Tk compensan</td>
<td></td>
<td></td>
<td>908</td>
<td>0,4</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>1339-1</strong></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>27118</td>
<td>17459</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1339-1</td>
<td>codo 90</td>
<td>40</td>
<td>3</td>
<td></td>
<td>0,72</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1339-2</td>
<td>codo 90</td>
<td>40</td>
<td>4</td>
<td></td>
<td>0,96</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>1339-2</strong></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>4798</td>
<td>2390</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1339-2</td>
<td>vál globo 2041</td>
<td>40</td>
<td>1</td>
<td></td>
<td>9,5</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>1340</strong></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>561</td>
<td>263</td>
<td>0,0768</td>
<td>0,22</td>
<td>833,29</td>
<td>1,06</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>codo 90</td>
<td>40</td>
<td>2</td>
<td></td>
<td>2,24</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1340</td>
<td>reducc 40-25</td>
<td>40</td>
<td>1</td>
<td></td>
<td>0,33</td>
<td></td>
<td></td>
<td></td>
<td>1,06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>73399</th>
<th>-1076</th>
</tr>
</thead>
<tbody>
<tr>
<td>long tubería 40</td>
<td>elevacion total</td>
</tr>
<tr>
<td>h tot= hf+hm=</td>
<td>0,43066694</td>
</tr>
</tbody>
</table>
En los motores auxiliares también existe un filtro fino justo a la entrada de combustible al motor. Si lo tenemos en cuenta, procederemos como en el caso del motor principal, separando las pérdidas del filtro en pérdidas en el cuerpo y en el propio elemento filtrante.

Para el caudal de la línea, se puede ver en la figura 74 la pérdida en el cuerpo del filtro.

![Fig. 74](image)

Sumando las pérdidas en el cuerpo y en el elemento de filtro, figura 75.

![Fig. 75](image)

Se observa que la pérdida de carga aquí es pequeña, del orden de 0,01bar.

Para el motor auxiliar del centro tenemos la siguiente tabla 28 para el cálculo.
<table>
<thead>
<tr>
<th>Línea</th>
<th>tipo acc</th>
<th>DN</th>
<th>D int</th>
<th>Cant</th>
<th>Longitud</th>
<th>variac cota Z</th>
<th>hf</th>
<th>hm</th>
<th>K</th>
<th>f</th>
<th>V m/s</th>
<th>Re</th>
<th>Q m3/h</th>
<th>Visc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1330-1</td>
<td>tubería</td>
<td>50</td>
<td>52,2</td>
<td>2741</td>
<td>0</td>
<td>0,0490</td>
<td>0,28</td>
<td>1305,81</td>
<td>2,12</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1330-2</td>
<td>te flujo recto</td>
<td>50</td>
<td></td>
<td>80</td>
<td>0</td>
<td>0,9</td>
<td></td>
<td>2,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long tubería</th>
<th>Elevación total</th>
<th>Sum k</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2821</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0,9</td>
</tr>
</tbody>
</table>

\[
\text{h tot} = \text{hf+hm} = 0,013695364
\]

<table>
<thead>
<tr>
<th>Línea</th>
<th>reducc 50-40</th>
<th>40</th>
<th>1</th>
<th>0,15</th>
<th>1,06</th>
</tr>
</thead>
<tbody>
<tr>
<td>1331</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>1008</td>
<td>-357</td>
</tr>
<tr>
<td>1331</td>
<td>codo 90</td>
<td>40</td>
<td>3</td>
<td>0,72</td>
<td>1,06</td>
</tr>
<tr>
<td>1331</td>
<td>vál globo 2018</td>
<td>40</td>
<td></td>
<td>9,5</td>
<td>1,06</td>
</tr>
<tr>
<td>1332</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>381</td>
<td>0</td>
</tr>
<tr>
<td>1332</td>
<td>vál 3 vías 2174</td>
<td>40</td>
<td>1</td>
<td>3</td>
<td>1,06</td>
</tr>
<tr>
<td>1333-2</td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>8747</td>
<td>-3011</td>
</tr>
<tr>
<td>1333-2</td>
<td>codo 90</td>
<td>40</td>
<td>5</td>
<td>1,2</td>
<td>1,06</td>
</tr>
<tr>
<td>1333-1</td>
<td>codo 90</td>
<td>40</td>
<td>7</td>
<td>1,68</td>
<td>1,06</td>
</tr>
<tr>
<td>Código</td>
<td>Tipo</td>
<td>Diámetro</td>
<td>Longitud</td>
<td>Peso</td>
<td>Densidad</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>24176</td>
<td>-18728</td>
</tr>
<tr>
<td>Tk 2050</td>
<td>Tk compensan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>24052</td>
<td>17459</td>
</tr>
<tr>
<td></td>
<td>codo 90</td>
<td>40</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>codo 90</td>
<td>40</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>4463</td>
<td>2390</td>
</tr>
<tr>
<td></td>
<td>vál globo 2028</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tubería</td>
<td>40</td>
<td>40,9</td>
<td>563</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>codo 90</td>
<td>40</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reducc 40-25</td>
<td>40</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>long tubería 40</th>
<th>elevación total</th>
<th>sum k</th>
</tr>
</thead>
<tbody>
<tr>
<td>63390</td>
<td>-1076</td>
<td>30,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h tot=</th>
<th>h_f+h_m=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,382551598</td>
</tr>
</tbody>
</table>

Tabla 28
Y el resultado del cálculo es el siguiente

\[
\frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_5}{\rho g} + \frac{v_5^2}{2g} + z_5 + h_{tot}
\]

\[
\frac{p_5}{\rho g} = \frac{p_2}{\rho g} + \frac{(v_2^2-v_5^2)}{2g} + (z_2 - z_5) - h_{tot} = P_2 - \rho \frac{0.015}{2} + \rho g (\Delta z - h_{tot})
\]

\[
P_5 = P_2 - \rho \frac{0.015}{2} + \rho g (\Delta z - h_{tot}) = 8,75 \times 10^5 - 14,86 - 14252,03
\]

\[
P_4 = 8,60 \times 10^5 \text{ Pa}
\]

Las pérdidas de carga son muy parecidas para los motores auxiliares, las pequeñas variaciones se deben a un ligero aumento de la longitud de tubería. En cualquier caso las pérdidas son muy pequeñas dado también que la velocidad por la tubería en muy baja, siempre en régimen laminar.
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA
UNIVERSIDAD DE CANTABRIA

PLIEGO DE CONDICIONES
3. PLIEGO DE CONDICIONES

Además de cumplir con la especificación técnica del armador, el buque tiene que cumplir los distintos reglamentos y normas impuestos por la legislación, tanto nacional como internacional y la sociedad de clasificación.

El buque está construido de acuerdo con los Reglamentos de Bureau Veritas para cumplir la cota: CLASS 1+Hull+Mach Ro-ro Passenger ship, unrestricted navigation, AUT-UMS, AUT-PORT, Inwater Survey.

3.1. REQUERIMIENTOS DE LA ESPECIFICACIÓN TÉCNICA

El buque está proyectado como tipo Ferry especialmente concebido para transporte de carga rodada con sus conductores y pasaje en general en viajes internacionales cortos.

En la construcción se debieron cumplir una serie de requisitos impuestos por Reglas y Reglamentos que se especificarán, y de acuerdo con la especificación técnica firmada entre armador y constructor.

En lo que respecta al sistema de combustible, las Reglas y Reglamentos fundamentales que son de aplicación se encuentran SOLAS y Marpol; así como las normas de la Sociedad de Clasificación Bureau Veritas.

De acuerdo con la especificación técnica la propulsión del buque se debe efectuar por medio de dos motores diésel semirápidos acoplados mediante una reductora con salida y embrague a un eje propulsor y con salida PTO para alternador sin embrague.

La generación de energía eléctrica se realiza por medio de tres grupos electrógenos y dos alternadores de cola.

Una de las exigencias de la especificación es el consumo de combustible que no debe exceder 185g/kWh con una tolerancia de 5%, al 100% de MCR utilizando un combustible de poder calorífico no menor de 10200kcal/kg en unas condiciones ambientales especificadas por la norma ISO.

Dispone también de la posibilidad de cambio a combustible ligero diésel.

La planta generadora de vapor debía constar de una caldera capaz de producir 1500 kg/h de vapor saturado a 7kg/cm². También debía estar preparada para consumir HFO 380 cSt.

La caldera debía disponer de dos tipos de llama para regular la producción y además existir un sistema automático para cambio a gasoil.

Para la planta eléctrica se proyectaba la instalación de tres grupos generadores con motor diésel con una potencia aproximada de 1100kW cada uno, a 1000rpm y acoplados directamente a un alternador.

Además se añadían dos alternadores de cola acoplados a los motores principales.

Se incluye también un grupo diésel de emergencia de 280 kW de potencia que funciona con gasoil.

Los motores de la planta generadora principal estarían preparados para utilizar combustible pesado HFO de viscosidad 380 cSt a 50 ºC. Se dispone también la opción de cambio a combustible ligero diésel.

Para cumplir con el requisito de funcionamiento autónomo se disponen de unos tanques de combustible de gravedad.

De este modo es necesario un sistema de combustible que permita el relleno, trasiego, purificación y alimentación de combustible.

Se instalan dos bombas de husillo para trasiego de combustible; una para servicio de HFO y otra para servicio de GO, ambas interconectadas para poder funcionar una como reserva de la otra.
El grupo generador de emergencia debe disponer de su propio tanque de combustible cuyo llenado se realiza por medio del sistema de trasiego de combustible.

La planta de vapor compuesta por una caldera de vapor dispone de sus propias bombas de alimentación de combustible, tres en este caso, que manejan combustible pesado y ligero.

La alimentación de combustible de los motores principales y motores auxiliares se realiza mediante dos módulos de combustible que pueden aspirar de los tanques de servicio diario de HFO o de GO. Cada módulo debe estar dimensionado para alimentar los dos motores principales y tres auxiliares. Los módulos de suministro de combustible admiten dos tipos de combustible, HFO y diésel, seleccionable mediante una válvula de tres vías en la entrada de alimentación del propio módulo.

Los módulos deben disponer de dos bombas de alimentación, dos bombas de circulación para motores principales y dos bombas de circulación para motores auxiliares, cada una de ellas de capacidad total, para funcionamiento de una bomba y la otra de reserva. Así mismo también debe disponer de dos calentadores de vapor de 100% de capacidad para el calentamiento de combustible de motores principales y dos calentadores eléctricos para motores auxiliares con capacidad de calentamiento suficiente para alimentar dos motores generadores.

La reglamentación también exige que las tuberías de combustible que conecten directamente a los tanques y lleven adosadas a estos unas válvulas de cierre rápido a distancia, aunque también deben poder actuarse localmente.

Exige también la especificación técnica que todas las válvulas y conexiones del servicio de combustible lleven conexionado mediante bridas. En el caso de las válvulas de mariposa se emplearán las de tipo LUG.
3.2. **REQUERIMIENTOS DE LA SOCIEDAD DE CLASIFICACIÓN**

El buque, clasificado con Burea Veritas, debe cumplir las normas que dicta la sociedad de clasificación.

Aquí impone la necesidad de colocar válvulas de seguridad en la descarga de las bombas de combustible que retornen el combustible a la aspiración de las propias bombas.

Cuando se trata de equipos de propulsión, los filtros tienen que estar dispuestos de modo que se pueda realizar la limpieza del elemento filtrante sin interrumpir el suministro de combustible filtrado.

Incluye algunas normas sobre la construcción de los sistemas internos del motor, donde las líneas de alta presión entre la bomba de inyección y el inyector tienen que llevar una tubería protectora que recoja las pérdidas de la tubería de alta presión, y una indicación de tales pérdidas.

En la parte C de la reglamentación, la correspondiente a Maquinaria, en el Capítulo 1, Sección 2 se presenta una tabla con las presiones de prueba de diferentes elementos de los diversos circuitos.

<table>
<thead>
<tr>
<th>Parts under pressure</th>
<th>Test pressure (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cylinder cover, cooling space</td>
<td>0,7</td>
</tr>
<tr>
<td>2 Cylinder liner, over the whole length of cooling space</td>
<td>0,7</td>
</tr>
<tr>
<td>3 Cylinder jacket, cooling space</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
<tr>
<td>4 Exhaust valve, cooling space</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
<tr>
<td>5 Piston crown, cooling space</td>
<td>0,7</td>
</tr>
<tr>
<td>6 Fuel injection system</td>
<td></td>
</tr>
<tr>
<td>a) Fuel injection pump body, pressure side</td>
<td>1,5 p (or p + 30, if lesser)</td>
</tr>
<tr>
<td>b) Fuel injection valve</td>
<td>1,5 p (or p + 30, if lesser)</td>
</tr>
<tr>
<td>c) Fuel injection pipes</td>
<td>1,5 p (or p + 30, if lesser)</td>
</tr>
<tr>
<td>7 Hydraulic system</td>
<td></td>
</tr>
<tr>
<td>Piping, pumps, actuators etc. for hydraulic drive of valves</td>
<td>1,5 p</td>
</tr>
<tr>
<td>8 Scavenge pump cylinder</td>
<td>0,4</td>
</tr>
<tr>
<td>9 Turbocharger, cooling space</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
<tr>
<td>10 Exhaust pipe, cooling space</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
<tr>
<td>11 Engine driven air compressor (cylinders, covers, intercoolers and aftercoolers)</td>
<td></td>
</tr>
<tr>
<td>a) Air side</td>
<td>1,5 p</td>
</tr>
<tr>
<td>b) Water side</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
<tr>
<td>12 Coolers, each side</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
<tr>
<td>13 Engine driven pumps (oil, water, fuel, bilge)</td>
<td>0,4 (but not less than 1,5 p)</td>
</tr>
</tbody>
</table>
Las líneas del sistema de combustible se han de probar a 1,5 veces la presión de trabajo, lo que impondrá la resistencia de la tubería que se va a emplear.

El Capítulo 1, Sección 10, está referido al sistema de tuberías. En la definición de tubería se incluyen los tubos, sus conexiones, tubos flexibles y expansiones, las válvulas y sus actuadores, accesorios como manómetros, filtros, etc y los cuerpos de las bombas.

También se incluyen depósitos a presión, intercambiadores de calor, bombas y depuradoras.

Define la presión de diseño como la presión que determina el fabricante del equipo para dimensionar el sistema. Como norma no se toma superior a la presión de trabajo máxima o superior a la máxima presión a la que esté regulada una válvula de seguridad del sistema.

Lo mismo ocurre con la temperatura, definiéndose la temperatura de diseño no superior a la temperatura máxima a la que va a trabajar el circuito.

La clasificación de tuberías que hace la Sociedad de Clasificación se encuentra dentro del apartado de Tubería.

Con las condiciones impuestas, se recurre a las normas internacionales de construcción y especificación de tubería para seleccionar dentro de la norma la tubería que se ajusta a las exigencias de resistencia y espesor.

En una línea de tubería, la presión máxima de trabajo viene limitada por la de los elementos más débiles, como pueden ser válvulas, manómetros u otro tipo de accesorio. Por lo tanto, cualquier elemento que se instale también cumplirá la condición de presión máxima de la línea.

En la adquisición de los materiales, estos serán de primera calidad, cumpliendo todos los componentes, siempre los requisitos mínimos exigidos anteriormente.
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA
UNIVERSIDAD DE CANTABRIA

PLANOS
4. PLANOS

<table>
<thead>
<tr>
<th>NOMBRE DE PLANO</th>
<th>REFERENCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposición tanques de combustible</td>
<td>PL 001</td>
</tr>
<tr>
<td>Esquema de alimentación de combustible</td>
<td>PL 002</td>
</tr>
<tr>
<td>Esquema de alimentación de combustible MP Br</td>
<td>PL 003</td>
</tr>
<tr>
<td>Esquema de alimentación de combustible MP Er</td>
<td>PL 004</td>
</tr>
<tr>
<td>Esquema de alimentación de combustible MMAA</td>
<td>PL 005</td>
</tr>
</tbody>
</table>

En fundas conjuntas se presentarán las isométricas según referencia de líneas.

<table>
<thead>
<tr>
<th>NOMBRE DE PLANO</th>
<th>REFERENCIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isométricas</td>
<td>Número de línea</td>
</tr>
</tbody>
</table>
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA
UNIVERSIDAD DE CANTABRIA

PRESUPUESTO
5. PRESUPUESTO

5.1. PRESUPUESTO DESGLOSADO EN PARTIDAS

Se incluirán los costes de los equipos, del material, el coste del montaje y la puesta en marcha y el coste del diseño de ingeniería.

Los módulos de combustible se suministran con todos los elementos montados y eléctricamente conectados, con la única necesidad de realizar la conexión de alimentación eléctrica y la conexión de datos con el sistema de automatización del buque.

En la especificación técnica del buque se incluyen instrucciones para que la tubería de combustible lleve tubería de acompañamiento de vapor de cobre y aislante de lana de roca de densidades comprendidas entre 53 y 75 kg/m$^3$. Exige un espesor de aislante, para tuberías de diámetro inferior a DN65 de 25mm.

Dentro del concepto tubería se incluye tubo recto, accesorios, tornillería, soportes y bridas de conexión.

Los tanques de compensación se adquieren sin tubería de calefacción ni aislamiento, trabajo que se realizará una vez montado con la propia tubería de acompañamiento de la tubería de combustible.

Las pruebas de presión que exige la normativa de la sociedad de clasificación se realizará al concluir toda la instalación y con todos los elementos ya montados.

Los circuitos y elementos de los módulos de combustible incluyen su certificado de aprobación y no es necesario volver a aplicar estas pruebas.
Cuadro de precios unitarios

<table>
<thead>
<tr>
<th>CONCEPTO</th>
<th>PRECIO (€)</th>
<th>UNIDADES</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de preparación</td>
<td>100.000</td>
<td>2</td>
<td>200.000</td>
</tr>
<tr>
<td>Tubería combustible</td>
<td>5600</td>
<td>-</td>
<td>5434</td>
</tr>
<tr>
<td>Tubería de acompañamiento</td>
<td>1500</td>
<td>-</td>
<td>1500</td>
</tr>
<tr>
<td>Tanques de compensación.</td>
<td>580</td>
<td>3</td>
<td>1740</td>
</tr>
<tr>
<td>Sin acompañamiento vapor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Válvula de tres vías DN50</td>
<td>260</td>
<td>2</td>
<td>520</td>
</tr>
<tr>
<td>Válvula de tres vías DN40</td>
<td>220</td>
<td>3</td>
<td>660</td>
</tr>
<tr>
<td>Válvula globo paso recto C/R DN50</td>
<td>190</td>
<td>2</td>
<td>380</td>
</tr>
<tr>
<td>Válvula globo paso recto C/R DN40</td>
<td>140</td>
<td>6</td>
<td>840</td>
</tr>
<tr>
<td>Aislante tubería</td>
<td>2000</td>
<td>-</td>
<td>2000</td>
</tr>
</tbody>
</table>

**TOTAL GASTOS DE MATERIAL** 213.175 €

Presupuesto desglosado de las tuberías de fuel.

<table>
<thead>
<tr>
<th>ELEMENTO</th>
<th>Precio unitario €</th>
<th>Cantidad</th>
<th>TOTAL (€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Codo 45º DN65</td>
<td>2,8</td>
<td>4</td>
<td>11,2</td>
</tr>
<tr>
<td>Codo 90º DN40</td>
<td>3,7</td>
<td>48</td>
<td>177,6</td>
</tr>
<tr>
<td>Codo 90º DN50</td>
<td>4,7</td>
<td>36</td>
<td>169,2</td>
</tr>
<tr>
<td>Concepto</td>
<td>Precio (€)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fabricación</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soldadura</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumibles</td>
<td>200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colocación</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2. **Coste de la mano de obra del montaje y diseño**

Se incluye aquí el coste del trazado, soldadura y montaje de tubería.
Los honorarios del ingeniero encargado del diseño del sistema ascienden a 3000 euros.

5.3. Balance Final del Presupuesto

<table>
<thead>
<tr>
<th>Secciones a presupuestar</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Módulo de preparación de combustible</td>
<td>200.000 €</td>
</tr>
<tr>
<td>Tuberías</td>
<td>10.675 €</td>
</tr>
<tr>
<td>Valvulería</td>
<td>2.400 €</td>
</tr>
<tr>
<td>Mano de obra</td>
<td>3.000 €</td>
</tr>
<tr>
<td>Consumibles, material de seguridad y distintos medios provisionales</td>
<td>600 €</td>
</tr>
<tr>
<td>Presupuesto de Ejecución del Material</td>
<td>216.675 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepto:</th>
<th>Importe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastos Generales y trámites</td>
<td>400 €</td>
</tr>
<tr>
<td>Honorarios del proyecto</td>
<td>3000 €</td>
</tr>
<tr>
<td>(21 % PEM) IVA</td>
<td>45.501,75 €</td>
</tr>
<tr>
<td>Presupuesto General para conocimiento del Cliente</td>
<td>265.576,75 €</td>
</tr>
</tbody>
</table>
Asciende el Presupuesto General para conocimiento del Cliente a 265.576,75 euros.
6. **BIBLIOGRAFÍA**

6.1. **LIBROS**


6.2. **PÁGINAS WEB**

Bureau Veritas


Octubre 2014

Catálogo de productos Almesa

[http://www.almesa.com/productos](http://www.almesa.com/productos)

Enero 2015

6.3. **NORMATIVA**

IMO, “Solas, Consolidated ed. 2009”

IMO, “MARPOL, Consolidated ed. 2011”
### BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>RD</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 GR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2&quot;</td>
<td>PIPE BEND, PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 GR B SMLS, SCH 40</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2&quot;</td>
<td>EIL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

---

**FILE INFORMATION**

- **PROJECT NAME:** Proyecto Fin Carrera Dean Diaz
- **DRAWING NUMBER:** 6037-1-2
- **DATE:** 02/10/15
- **REV.:** 11
- **SCALE:** N.T.S.

---

**TABLE OF CONTENTS**

- **SERVICE**
- **PIPE SPEC**
- **MAX PRESSURE**
- **MAX TEMPERATURE**
- **P&ID DWG**
- **INSULATION SPEC**
- **INSULATION THK**

---

**DIAGRAM**

- Diagram showing dimensions and annotations.
CONT'D ON
6037-3
3371,4523 1205,4643
573,5511

CONT'D ON
6037-10
3371,4523 1267,3643
611,8511

CONNECTED TO
ACPPBD30CONNECTOR
E 3371
N 1267
EL +635

---

**BILL OF MATERIALS**

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>ND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>TEE, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

---

**Proyecto Fin Carrera Dean Diaz**

---

---
### Bill of Materials

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
</tbody>
</table>

### Drawing Information

- **Drawing Number:** 6037-3
- **Drawing Title:** Cont'd on 6037-1
  - Service: 3371, 4524, 1357, 3643, 573, 5511
  - Insulation Spec: 6037-2
  - P&ID DWG: 3371, 4523, 1305, 4643, 573, 5511

### Project Details

- **Project Name:** Proyecto Fin Carrera Dean Diaz
- **Date:** 02/10/15
- **Description:** MAX PRESSURE, MAX TEMPERATURE, AREA, TYPE, N.T.S.
- **Sheet:** 4 of 11
- **Rev.:** 0

---

**SERVICE**

**PIPE SPEC**

**MAX PRESSURE**

**MAX TEMPERATURE**

**P&ID DWG**

**INSULATION SPEC**

---

**DATE**

**DRAWN**

**CHKD**

**APPD**

**INSULATION THK**

---

**BILL OF MATERIALS**

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
</tbody>
</table>

---

**DRAWN**

**CHKD**

**APPD**

**INSULATION THK**

---
Proyecto Fin Carrera Dean Diaz

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

02/10/15

CONT'D ON
6037-5
3333,3523 1267,3643
699,1823

CONT'D ON
6037-10
3371,4523 1267,3643
651,0823
**BILL OF MATERIALS**

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>ND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SWLS, SCH 40</td>
</tr>
</tbody>
</table>

**Project 1**

**DRAWING NUMBER:**

**JOB NUMBER:**

**SCALE:**

**SHEET:**

**REV.**

**DESCRIPTION**

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHK'D</th>
<th>APP'D</th>
<th>INSULATION THK</th>
</tr>
</thead>
<tbody>
<tr>
<td>6037-5</td>
<td>Project 1</td>
<td>02/10/15</td>
<td>6037</td>
<td>N.T.S.</td>
<td>6 of 11</td>
<td>0</td>
</tr>
</tbody>
</table>
### Project Name
Proyecto Fin Carrera Dean Diaz

**BILL OF MATERIALS**

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>OD</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

**REV. NUMBER**

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHKD</th>
<th>APPD</th>
<th>INSULATION THK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N.T.S.</td>
<td>02/10/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proyecto Fin Carrera Dean Diaz

<table>
<thead>
<tr>
<th>BILL OF MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>ID</strong></td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

---

Service
Pipe Spec
Max Pressure
Max Temperature
P&ID DWG
Insulation Spec
Insulation THK

02/10/15

N.T.S. 8 of 11 0
<table>
<thead>
<tr>
<th>SERVICE</th>
<th>PIPE SPEC</th>
<th>MAX PRESSURE</th>
<th>MAX TEMPERATURE</th>
<th>P&amp;ID DWG</th>
<th>INSULATION SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONT'D ON 6037-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3371.4523</td>
<td>1267,3643</td>
<td>651,0823</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**BILL OF MATERIALS**

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,1M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SMLS, SCH.40</td>
</tr>
</tbody>
</table>

**PROJECT NAME:** Proyecto Fin Carrera Dean Diaz

**DRAWING NUMBER:** 6037-10

**DATE:** 02/10/15

**AREA:** N.T.S.

**SHEET:** 11 of 11

**REV.:** 0
Proyecto Fin Carrera Dean Diaz

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>2&quot;- 3000 LBS, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

REV. DATE: 02/10/15

6038-2

02/10/15

6038

N.T.S. 2 of 12 0
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 GR B SWLS, SCH 40</td>
</tr>
</tbody>
</table>

**Bill of Materials**

**Project Name:** Proyecto Fin Carrera Dean Diaz

**Drawing Number:** 6038-3

**Designation:** P&ID DWG

**Revision:** 02/10/15

**Insulation Spec:** Area:

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHK'D</th>
<th>APP'D</th>
<th>INSULATION THK</th>
</tr>
</thead>
</table>
Proyecto Fin Carrera Dean Diaz

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>UNIT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3M</td>
<td></td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>EIL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

SERVICE

PIPE SPEC

MAX PRESSURE

MAX TEMPERATURE

P&ID DWG

INSULATION SPEC

INSULATION THK

PROJECT NAME:

Proyecto Fin Carrera Dean Diaz

DRAWING NUMBER:

6038-4

02/10/15

N.T.S.

4 of 12
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

**Bill of Materials**

- **Service**: Proyecto Fin Carrera Dean Diaz
- **Pipe Spec**: 
- **Max Pressure**: 
- **Max Temperature**: 
- **P&ID DWG**: 
- **Insulation Spec**: 
- **Insulation Thk**: 

**Drawing Number**: 6038-7

**Drawing Date**: 02/10/15

**Location**: N.T.S.

**Sheet**: 7 of 12
BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,2M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 GR B SWLS, SCH 40</td>
</tr>
</tbody>
</table>

PROJECT NAME: Proyecto Fin Carrera Dean Diaz

DRAWN: 02/10/15

02/10/15
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

**Project Name:** Proyecto Fin Carrera Dean Diaz

**Drawing Number:** 6038-9

**Drawing Date:** 02/10/15

**Job Number:** 6038

**Sheet:** N.T.S. 9 of 12

**Table:**

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHKD</th>
<th>APPD</th>
<th>INSULATION THK</th>
</tr>
</thead>
</table>
### Bill of Materials

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>ND</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SWLS, SCH 40</td>
</tr>
</tbody>
</table>

---

**Project Name:** Proyecto Fin Carrera Dean Diaz

---

**Service:**

**Pipe Spec:**

**Max Pressure:**

**Max Temperature:**

**P&ID DWG:** 6038-10

**Insulation Spec:**

---

**Revision:** 02/10/15

---

**Drawing Number:** 6038

---

**Job Number:** N.T.S.

---

**Scale:**

**Sheet:** 10 of 12

---

**Rev.:**
Cont'd from DWG # 6039-1-1
3488,4003,1384,3123
198,3521

Cont'd on DWG # 6039-1-3
E 2803
N 1223
EL 4160

PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B
SMLS, SCH 40

2 3 2" EEL. 90, 3000 LB, SW, ASME B16.11, ASTM A105

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2W</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2&quot;</td>
<td>EEL. 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

Proyecto Fin Carrera Dean Diaz

6039-1-2

02/10/15

Sheet N.T.S. 2 of 6
BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.2M</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PE, ASME B36.10, ASTM A106 GR B SMDS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2&quot;</td>
<td>EIL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2&quot;</td>
<td>1/2&quot; 2&quot; PH METRIC REDUCER CONC.</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2&quot;</td>
<td>PH METRIC TEE</td>
</tr>
</tbody>
</table>

PROJECT NAME: Proyecto Fin Carrera Dean Diaz

02/10/15

REV. DATE DESCRIPTION

P&ID DWG

INSULATION SPEC

N.T.S. 2 OF 2 0
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1&quot;</td>
<td>PIPE, SEAMLESS, FC, ASME B36.10M, ASTM A106 OR B SMDS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1&quot;</td>
<td>PIPE, SEAMLESS, FC, ASME B36.10M, ASTM A106 OR B SMDS, SCH 40</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1&quot;</td>
<td>FLANGE SW, 150 LB, RF, ASME B16.5, ASTM A105 OR WPO</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1/2&quot;</td>
<td>BOLT SET, RF, 150 LB, STUD BOLT</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1&quot;</td>
<td>NUT/SEND, 1/2&quot; THK, RF, 150 LB, ASME B16.50, CS/PTHE</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1&quot;</td>
<td>CHECK VANE, SWING, 150 LB, RF, ASME B16.10, ASTM A105 OR WPO</td>
</tr>
</tbody>
</table>

---

**BILL OF MATERIALS**

**SERVICE**

**PIPE SPEC**

**MAX PRESSURE**

**MAX TEMPERATURE**

**P/N/ID CWG**

**INSULATION SPEC**

**INSULATION THK**

**PROJECT NAME**

Proyecto Fin Carrera Dean Diaz

**DATE**

02/10/15

**DESIGNER**

Dean Diaz

**DRAWING NO.**

6020-1

**REV.**

02

**DESCRIPTION**

N.T.S.

**DATE**

02/10/15

**DRAWING CHK**

Dean Diaz

**APPROVED**

N.T.S.

**INSULATION THK**

1 of 1

**N.T.S.**

N.T.S.

02/10/15

6023

Proyecto Fin Carrera Dean Diaz

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>A</td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B 3660 OR B 3665</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
<tr>
<td>ID</td>
<td>QTY</td>
<td>NO</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>2</td>
<td>2 1/2&quot; PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2 1/2&quot; PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2 1/2&quot; FLANGE C DIN 2524</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5</td>
<td>M/Metric Stud Bolt</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>M/Hinging shackle</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2 1/2&quot; FLAT-OFF GLOBE VALVE PH 25 C</td>
</tr>
</tbody>
</table>

**Proyecto Fin Carrera Dean Diaz**

<table>
<thead>
<tr>
<th>SERVICE</th>
<th>PIPE SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX PRESSURE</td>
<td></td>
</tr>
<tr>
<td>MAX TEMPERATURE</td>
<td></td>
</tr>
<tr>
<td>PIH/DWG</td>
<td></td>
</tr>
</tbody>
</table>

| INSULATION SPEC          |            |

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWING</th>
<th>APPR</th>
<th>INSULATION THK</th>
</tr>
</thead>
</table>
Proyecto Fin Carrera Dean Diaz

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, FC, ASME B36.10, ASTM A106 OR B 30CS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2&quot;</td>
<td>EL, 90, 3000 LB, SW, ASME B16.11, ASTM A105</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2&quot;</td>
<td>FLANGE C, SN 304A</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>5/8&quot;</td>
<td>NUT, WORM, M6X50</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2&quot;</td>
<td>EL METRIC GLOBE VAL</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2&quot;</td>
<td>EL METRIC GLOBE VALVE PN 25, C</td>
</tr>
</tbody>
</table>

SERVICE

PIPE SPEC

MAX PRESSURE

MAX TEMPERATURE

PA/HO DWG

INSULATION SPEC

INSULATION THK
**Proyecto Fin Carrera Dean Diaz**

### Bien de Materiales

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>A3</td>
<td>PIP. SEAMLESS. PC. ASME B3610. ASME A106 OR B SMIS. SCH 40.</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>A3</td>
<td>ELL. 90. 3000 LB. SW. ASME B1611. ASME A105.</td>
</tr>
</tbody>
</table>

---

**Dibujo**

- **COMPI****
  - 1212-1-1
  - N 1333
  - EL 2348

- **Title Block**
  - **PROJECT**: Proyecto Fin Carrera Dean Diaz
  - **DOC NO**: 1212-1-2
  - **DATE**: N.T.S.
  - **DRAWN BY**: 2
  - **CHECKED BY**: 4
  - **APPROVED**: 0
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2 1/2&quot;X1/2&quot; REDUCER (ODMC), SW, ASME B16.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3&quot; EL, SSS OD, SW, ASME B16.11, ASTM A105</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2 1/2&quot;</td>
<td>PH NITRILE TIE</td>
</tr>
<tr>
<td>ID</td>
<td>QTY</td>
<td>NO</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2&quot;</td>
<td>FLANGED - CLS 150 - WILD NICK FLAT FACE FLANGE</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>3/8&quot;</td>
<td>BOLT SET, FIT, 150 LB, STD 0221</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2&quot;</td>
<td>GASKET, FLAT, 1/8&quot; THK, FIT, 150 LB, ASME B16.31</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2&quot;</td>
<td>3-WAY FLANGE VALVE, 150 LB, FIT, ANSI 60</td>
</tr>
</tbody>
</table>

**Proyecto Fin Carrera Dean Diaz**

**SERVICE**

**PIPE SPEC**

**MAX PRESSURE**

**MAX TEMPERATURE**

**P&ID DWG**

**INSULATION SPEC**

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWING CHK</th>
<th>APPD</th>
<th>INSULATION THK</th>
</tr>
</thead>
</table>

**Dwg No.**

**Sheet No.**

**Change No.**

**Part No.**

**N.T.S.**

2 3 0
Proyecto Fin Carrera Dean Diaz

1. PIPE, SEAMLESS, PC, ASME B36.10, ASTM A105 OR B 36.10, ECH 40
2. PIPE, SEAMLESS, 400, PC, ASTM A312
3. EL, 90, 2000 LB, TR, ASME B16.11, ASTM A105
4. FLANGE C, 2000# 3154
5. 8 5/8"-18 UN, FH METRIC STUD BOLT
6. 2 5/8"-18 UN, FH METRIC GASKET
7. 1 5/8" DRAIN-OFF GLOBE VALVE FN 20 G

SERVICE

PIECE SPEC

MAX PRESSURE

MAX TEMPERATURE

PA/HQ CWG

INSULATION SPEC

1215

1215

02/10/15

REV DESCRIPTION DATE DRAWN CHKED APPD INSULATION THK

N.T.S. 1 0
Proyecto Fin Carrera Dean Diaz

BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>2</td>
<td>2 1/2&quot; PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2 1/2&quot; PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2 1/2&quot; FLANGE C DIN 2534</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>2</td>
<td>M8 X 500 M8 METRIC STUD BOLT</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>M8 X 100 M8 METRIC SOCKET BOLT</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2 1/2&quot; DRAFT-OFF GLOBE Valve PN 20 C</td>
</tr>
</tbody>
</table>

SERVICE

PIPE SPEC

MAX PRESSURE

MAX TEMPERATURE

P/R/D O/W

INSULATION SPEC

02/10/15

PROYECTO FIN CARRERA DEAN DIAZ

1111-1
Proyecto Fin Carrera Dean Diaz

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIM</td>
<td>2&quot;</td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>ID</td>
<td>QTY</td>
<td>NO</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B, SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>FI. MATERIAL, ELBOW 90(^\circ)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td></td>
<td>PLUG C. ORihn 0164</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td>FI. METRIC STUD NIPPLE</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td></td>
<td>FI. METRIC GLOBE</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td>SHUT-OFF GLOBE VALVE PN 25 C</td>
</tr>
</tbody>
</table>
BILL OF MATERIALS

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/2&quot;</td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 GR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1 1/2&quot;</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A106</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>FLANGED - CLASS 150 - WELD NECK FOR FACE FLANGE</td>
</tr>
</tbody>
</table>

Proyecto Fin Carrera Dean Diaz
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/2&quot;</td>
<td>PIPE SEAMLESS, PC, ASME B36.10, ASTM A106 GR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1/2&quot;</td>
<td>ELL 1.000 LR, SW, ASME B16.11, ASTM A106</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2X1/2&quot;</td>
<td>METRIC REDUCER CONE</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1/2&quot;</td>
<td>FLANGE C DN 250</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5/8&quot;</td>
<td>METRIC STUD BOLT</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1/2&quot;</td>
<td>METRIC GASKET</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1/2&quot;</td>
<td>SHUT-OFF GLOBE VALVE PN 25.0</td>
</tr>
</tbody>
</table>

**Bill of Materials**

**Service**

<table>
<thead>
<tr>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Pipe Spec**

<table>
<thead>
<tr>
<th>PIPE SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Max Pressure**

<table>
<thead>
<tr>
<th>MAX PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Max Temperature**

<table>
<thead>
<tr>
<th>MAX TEMPERATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Plan DWG**

<table>
<thead>
<tr>
<th>PLAN DWG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Insulation Spec**

<table>
<thead>
<tr>
<th>INSULATION SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

**Drawing Information**

<table>
<thead>
<tr>
<th>REV</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHECKED</th>
<th>APPROVED</th>
<th>INSULATION THK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Project Name**

Proyecto Fin Carrera Dean Diaz

Dean Diaz

<table>
<thead>
<tr>
<th>PROJECT NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto Fin Carrera Dean Diaz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1331</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>02/10/15</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1331</th>
</tr>
</thead>
</table>

<p>| N.T.S. | 1 | 1 | 0 |</p>
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3W</td>
<td>1</td>
<td>1 1/2&quot; PIPE SEAMLESS, FC, ASME B36.10M, ASTM A106 GR B SMLS, SCH. 40</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>FLANGED – CLASS 150 – WELD NECK FLANGE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>FLANGE C ON DEAN</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>1 1/2&quot;</td>
<td>BOLT SET, H, 150 LB, THD ROJ</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>5/8&quot;</td>
<td>BOLT HEMIC STUD ONLY</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1 1/2&quot;</td>
<td>WASHER, FLAT, 1/8&quot; THK, FT, 150 LB, ASME B16.21</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>BOLT HEMIC SQUARE</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>2-BOLT PLUG VALVE, 150 LB, FC, AN 60</td>
</tr>
</tbody>
</table>

**Bill of Materials**

<table>
<thead>
<tr>
<th>SERVICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proyecto Fin Carrera Dean Diaz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSULATION SPEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEAN DIAZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSULATION THK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1332</td>
</tr>
</tbody>
</table>

**Drawing Information**

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHECKED</th>
<th>APPR.</th>
</tr>
</thead>
<tbody>
<tr>
<td>02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID</td>
<td>QTY</td>
<td>NO</td>
<td>DESCRIPTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>23.5W</td>
<td>1 1/2&quot;</td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 GR B SMLS, SCH 40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1 1/2&quot;</td>
<td>ELL 90, 3000 LB, SW, ASME B16.11, ASTM A420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>FLANGE 90, 150 LB, RF, ASME B16.5, ASTM A105 FNPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1 1/2&quot;</td>
<td>BOLT SET, RF, 150 LB, STD, FRT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1 1/2&quot;</td>
<td>GAUGED, SWG, 1/8&quot; THK, RF, 150 LB, ASME B16.32, CS/PTHE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Project Name:** Proyecto Fin Carrera Dean Diaz  
**Drawing By:** Dean Diaz  
**Drawing Number:** 1333-1

**Service:***

**Pipe Spec:**

**Max Pressure:**

**Max Temperature:**

**Pn# Dwg:**

**Insulation Spec:**

**Insulation Thk:**

<table>
<thead>
<tr>
<th>REV</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHK'D</th>
<th>APPROVED</th>
<th>INSULATION THK</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/15/15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
**Proyecto Fin Carrera Dean Diaz**

Dean Diaz

---

**BILL OF MATERIALS**

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/2&quot;</td>
<td>PIPE, SEAMLESS, PC, ASME B36.10, ASTM A106 OR B SMLS, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1/2&quot;</td>
<td>ELL, R7, 3000 LB, SW, ASME B16.11, ASTM A105N</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1/2&quot;</td>
<td>FORGED - CLASS 150 - WILD NICK PTFE FACE FLANGE</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3/4&quot;100</td>
<td>RI IMPERIAL SIGEL</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1/2&quot;</td>
<td>RI IMPERIAL GIGLET</td>
</tr>
</tbody>
</table>

---

**SERVICE**

**PIPE SPEC**

**MAX TEMPERATURE**

**MAX PRESSURE**

**PAID DWG**

**00/10/15**

**INSULATION SPEC**

**1333-2**

---

**INSULATION THK**

<table>
<thead>
<tr>
<th>REV</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWN</th>
<th>CHK'D</th>
<th>APPR</th>
</tr>
</thead>
</table>
Bill of Materials

<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3N</td>
<td>1</td>
<td>E-FLANGE, SS, ASME B16.5, SCH 40</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1 1/2&quot; E-FLANGE C DN 2504</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5/8&quot;</td>
<td>HN METRIC SSU HOSE</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1 1/2&quot; HN METRIC GASKET</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>SHUT-OFF GLOBE VALVE PN 25, C</td>
</tr>
</tbody>
</table>

Diagram: Proyecto Fin Carrera Dean Diaz

Specifications:
- Pipe Spec: 1325-3
- Insulation Spec: 037/015
- Service: 1326
- Rev.: N.T.S. 3
- Date: 02/10/15
- Drawing CH: 000
- App: 0
<table>
<thead>
<tr>
<th>ID</th>
<th>QTY</th>
<th>NO</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2&quot;</td>
<td>TEE, 3000 LB, SR, ASME B16.11, ASTM A105</td>
</tr>
</tbody>
</table>

**Bill of Materials**

| SERVICE | | PROJECT NAME | | |
|---------| | Proyecto Fin Carrera Dean Diaz | | |
| PIPE SPEC | | | |
| TEE | | | |
| MAX PRESSURE | | 1330-2 | |
| MAX TEMPERATURE | | | |
| P&ID DWG | | | |
| INSULATION SPEC | | 1330 | |

**Drawing Information**

<table>
<thead>
<tr>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DRAWING CHKED</th>
<th>APPR.</th>
<th>INSULATION THK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Drawing Details**

- N.T.S.
- 02/10/15
- 1330-2
- Rev. 2 of 2

---

**Bill of Materials Details**

- ID: 1
- QTY: 1
- NO: 2"
- DESCRIPTION: TEE, 3000 LB, SR, ASME B16.11, ASTM A105