Trabajo Fin de Máster

Análisis de los Temporales Marinos entre 2013-2014 y de sus Impactos en las Costas de Cantabria

Máster Universitario

Técnicas de Análisis, Evaluación y Gestión Sostenible de Procesos y Riesgos Naturales

Autor: Gorka Manero Lecea
Director: Viola María Bruschi
Con todo el cariño a las personas que han ayudado a que este trabajo se pudiera realizar.

En especial a Viola Bruschi, como directora de este trabajo, por la especial atención a su desarrollo, por su aportación didáctica y, sobre todo, por su comprensión y sus palabras en los momentos difíciles.

También, mi agradecimiento al conjunto de docentes con los que tuve el placer de formarme a lo largo de la duración del máster.

Por último, pero no menos importante, agradezco a mis padres, a mi hermana, a Laura, a mi familia y amigos, y a la gente de “El Pozo”, por sus ánimos, su paciencia y apoyo incondicional a lo largo de este tiempo.

Y a ti, donde quiera que estés.

Gracias a todos.
ÍNDICE

1. INTRODUCCIÓN..1
 1.1.- CAMBIO CLIMÁTICO GLOBAL...1
 Subida relativa del nivel medio del mar...3
 Eventos climáticos de tipo extremo..4
 1.2.- IMPACTO EN ZONAS DE LITORAL...5
 Tipos de costas...6
 Impactos..7
 1.3.- ADAPTACIÓN Y MITIGACIÓN..8

2. OBJETIVOS...10

3. METODOLOGÍA..10

4. FACTORES RELACIONADOS CON LA FRECUENCIA Y LOS DAÑOS.............................11
 4.1.- INUNDACIÓN / EMBATE DE MAR...11
 Daños en los bienes...11
 Daños en los personas...15

5. TEMPORALES DE 2013/2014 Y SUS IMPACTOS EN LA COSTA DE CANTABRIA.........16
 5.1.- TEMPORALES DE 2013...17
 5.2.- TEMPORALES DE 2014...19

6.- ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS OBTENIDOS.................................27

7.- CONCLUSIONES Y FUTURAS LÍNEAS DE TRABAJO...30

BIBLIOGRAFÍA..31

ANEXO..35
 TABLAS..36
 FIGURAS..41
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

El trabajo se ha llevado a cabo mediante la recopilación y el análisis de los datos existentes y/o disponibles sobre temporales en las costas cántabras y sus consecuencias. Por ello, también se han analizado aquellos datos relacionados con los daños producidos tanto a personas como a infraestructuras, en la medida en la que la disposición de los mismos lo haya permitido, así como aquellos datos pertenecientes a un rango temporal mayor, en orden a una mejor comprensión de la tendencia existente.

En cuanto a los resultados obtenidos, cabe destacar que la frecuencia de ocurrencia de temporales marinos, tanto a nivel nacional como autonómico y en el del caso concreto del litoral cántabro, tiene una tendencia ascendente, así como el impacto y los daños producidos por los mismos.

Por todo ello, se puede concluir que, la afección de los eventos climáticos extremos, sobre la costa de Cantabria, puede originar grandes pérdidas a nivel socioeconómico, siendo incapaces actualmente de conocer la repercusión real de estos daños de cara al futuro. Es por esto que se plantea como fundamental la realización de un mejor análisis del impacto y las consecuencias de estos episodios y su tendencia futura, con información accesible y de calidad para cada uno de los aspectos a estudiar, y los medios correspondientes. Siendo este el camino en el que asentar líneas futuras de trabajo que permitan obtener resultados y conclusiones a los interrogantes sin resolver.
1. INTRODUCCIÓN.

Este trabajo Fin de Máster se basa en la justificación bibliográfica de los elementos llevados a estudio, junto con la intención de realizar un análisis de los efectos de los eventos asociados al cambio climático que implican un impacto sobre el litoral. A su vez, el análisis de su evolución temporal contribuirá a una mejor comprensión de la situación actual y a proporcionar herramientas o sugerencias para futuras líneas de investigación y gestión.

1.1.- Cambio climático global.

El “Cambio climático” es, por definición, según la Convención Marco de las Naciones Unidas sobre el Cambio Climático, un cambio de clima atribuido directa o indirectamente a la actividad humana, que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante periodos de tiempo comparables (Convención Marco de las Naciones Unidas sobre el Cambio Climático, 1992).

Según el último informe, publicado en 2014, del IPCC (IPCC, 2014), el calentamiento global es inequívoco, y desde los años 50, muchos de los cambios observados no tenían precedentes en décadas. Éste calentamiento global es apreciable tanto en la disminución de nieve y hielo, así como en la subida relativa del nivel medio del mar, o en que el período comprendido entre 1983 a 2012 son, seguramente, los 30 años más cálidos de los últimos 1400 años del Hemisferio Norte. En dicho informe, se plantea que existe un 95% de certeza de que la principal causa del actual calentamiento global se debe a actividades antrópicas y de que a medida de que estas actividades aumenten, los riesgos e impactos serán mayores, más severos y prácticamente irreversibles.

Estos cambios en el clima han amplificado y creado impactos y riesgos tanto en sistemas naturales como humanos. Aquellos impactos de especial interés, debido a la temática de este trabajo, son, los cambios relativos del nivel del mar, cambios en las tormentas/temporales, los extremos de nivel del mar... Estos han de ser tenidos en gran consideración, ya que es claramente observable, basándonos en recientes acontecimientos, que gran parte de ecosistemas y de sistemas humanos son muy sensibles a dichos episodios climáticos de tipo extremo, pese a su capacidad de adaptación y prevención (IPCC, 2014).

Debido a que el presente trabajo se centra en los elementos asociados al cambio climático que implican un impacto sobre el litoral, aunque más adelante se analizan brevemente, es de interés, mostrar un resumen de los factores de cambio climático global a los que los diferentes elementos del litoral están sometidos, sus tendencias observadas desde el informe AR4 del IPCC, y las proyecciones incluidas en el AR5 (IPCC, 2013; Losada et al., 2014, Méndez et al., 2004).
- Nivel del mar: Causará efectos de sumergencia, así como daños por inundación y erosión costera, entre otros. La tendencia observada, junto con su proyección, refleja un aumento muy probable (>90%) del nivel medio del mar global (5.3.2.2 AR5 WG1, Capítulos 3.7.2 / 3.7.3) y en el caso concreto de la proyección cabe destacar la variabilidad regional de la subida del nivel medio del mar global.

- Tormentas (ciclones tropicales/extratropicales): Afectará en modo de mareas meteorológicas y oleaje, inundación costera, erosión y daños en infraestructuras u obras de protección localizadas en la costa. La tendencia y proyección observada es de baja confianza (2 sobre 10) debido a las limitaciones en las observaciones y la variabilidad regional (Box 5.1, WG1 2.6.3) en el caso de los ciclones tropicales, aunque se prevé un incremento probable (>66%) en los más intensos; en el caso de los ciclones extratropicales existe una tendencia de cambios probables (>66%) en la trayectoria de las borrascas junto con un grado bajo de confianza en cuanto a los cambios en la intensidad (5.3.3.1 AR5 WG1 2.6.4), y una proyección de alto grado de confianza a que no existirá una disminución en cuanto a número (8 sobre 10), aunque una proyección de bajo grado de confianza (2 sobre 10) referida a su intensidad.

- Vientos: Presentan un efecto en cuanto a oleajes de viento, mareas meteorológicas, daños a infraestructuras situadas en la costa y cambios en el transporte eólico dunar. Su tendencia y proyección son de un bajo grado de confianza (2 sobre 10) en cuanto a la velocidad media y extrema (5.3.3.2, SREX, WG1 Capítulo 3.4.5) y de un grado de confianza bajo (2 sobre 10) en las velocidades medias del viento junto con un incremento probable (>66%) en la velocidad extrema de vientos en ciclones tropicales.

- Olas: Efecto reflejado en cuanto a erosión costera, cambios en la operatividad y estabilidad de infraestructuras costeras y daños en las mismas, e inundación costera. Presenta una tendencia de aumento probable (>66%) en la altura de la ola significante en latitudes altas (5.3.3.2, WG1, Capítulo 3.4.5), y una proyección de bajo grado de confianza (2 sobre 10) en general, pero de grado medio (5 sobre 10) para los incrementos en la altura de ola significante del Océano Antártico.

- Niveles del mar extremos: Sus efectos serán de inundación y erosión costera, entre otros; y su tendencia y proyección son de alto grado de confianza (8 sobre 10) de aumento de niveles del mar extremos debido al aumento del nivel medio del mar global.

Entre los factores de cambio de origen no climático, se pueden considerar, el desarrollo socioeconómico, el cambio en la aportación de nutrientes a las aguas costeras, la hipoxia, la acidificación de los océanos, o la retención de sedimentos aportados por los ríos... (Cendrero et al., 2009; Zazo, 2015).

A continuación, como se mencionaba anteriormente, se hace un breve comentario de los principales factores de cambio climático de origen climático tenidos en cuenta.
Subida relativa del nivel medio del mar.

El término “nivel del mar”, indica una situación teórica y se refiere a un punto del litoral fijo y estable. Por otra parte, el término “nivel medio”, acepta variabilidad vertical y tiene en cuenta oscilaciones de período más largo que las olas de largo período presentes en la costa. Se consideran tres componentes en dichas oscilaciones: una periódica asociada a la marea astronómica, otra no periódica asociada a la marea meteorológica y otra de variación más lenta asociada a la variación relativa de los niveles tierra-mar (IPCC, 2014; Cendrero et al., 2005; Bardají et al., 2009). También se han descrito cambios en la velocidad de rotación de la Tierra como otro factor más que puede influir en los cambios del nivel del mar (Mörner, 1996; Zazo, 2015). En cuanto a la contribución de la marea meteorológica, los cambios en las tormentas combinados con el aumento del nivel medio del mar, ambos como consecuencia del cambio climático, jugarán un papel importante a la hora de modificar la frecuencia y magnitud de los niveles extremos del mar (Menéndez y Woodworth 2010; Losada et al., 2014).

Una vez comentados elementos conceptuales referidos al nivel medio del mar, se puede profundizar en los resultados expuestos en el informe realizado por el IPCC (IPCC, 2013). En dicho informe se resalta que, entre los años 1901-2010, el nivel medio global del mar aumentó 0,19m aprox. y que desde principios de la década de 1970, la conjunción entre la pérdida de masa glacial y el aumento de la temperatura del océano explica alrededor del 75% de dicho aumento. A su vez, clarifica que, durante el periodo entre 1993-2010, la subida media global del nivel del mar se debe a la suma de las contribuciones de distintos elementos, como el aumento de la temperatura del océano, el calentamiento global, los cambios producidos en las masas glaciares, la capa de hielo de Groenlandia, la capa de hielo Antártico y el agua terrestre (Cendrero et al., 2009).

Las tasas de aumento del nivel del mar en regiones amplias, puede ser mayor o menor que el aumento medio del nivel global del mar en períodos de varias décadas, debido a fluctuaciones en la circulación oceánica. Se estima que, el nivel medio global del mar seguirá subiendo a lo largo del s.XXI (IPCC, 2013), aumentando la vulnerabilidad de las comunidades costeras y de los sectores económicos, provocando cambios a nivel medioambiental y socioeconómico (Nicholls et al., 2010; Alvarado-Aguilar, 2012).

Actualmente existe una mejora significativa en la comprensión y la proyección del cambio del nivel del mar, y en todos los escenarios que se plantean, la tasa de aumento del nivel del mar es muy probable que exceda la tasa observada de 2,0 (1,7-2,3) mm/año entre 1971-2010, con una tasa de aumento del nivel del mar entre 2081-2100 de 8 a 16 mm/año.
En vista de los resultados obtenidos el IPCC decidió crear un nuevo conjunto de escenarios, denominados Rutas Representativas de Concentración (RCP) (véase Tabla 1 del Anexo), que son la base del Quinto Informe de Evaluación, AR5 (IPCC, 2013).

<table>
<thead>
<tr>
<th>Escenarios</th>
<th>Subida del nivel del mar (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2046-2065</td>
</tr>
<tr>
<td>RCP2.6</td>
<td>0,24 [0,17 - 0,31]</td>
</tr>
<tr>
<td>RCP4.5</td>
<td>0,26 [0,19 - 0,33]</td>
</tr>
<tr>
<td>RCP6.0</td>
<td>0,25 [0,18 - 0,32]</td>
</tr>
<tr>
<td>RCP8.5</td>
<td>0,29 [0,22 - 0,37]</td>
</tr>
</tbody>
</table>

Tabla 1.- Proyecciones de nivel medio del mar global en m relativo al periodo 1986-2005. Los resultados muestran el valor medio y los límites superior (intervalo de confianza del 95%) e inferior (intervalo de confianza del 5%) Fuente: WGI, AR5 (IPCC, 2013) Resumen ejecutivo y secciones 12.4.1, 13.5.1 y 13.5.4

Eventos climáticos de tipo extremo.

Se han observado cambios en muchos fenómenos meteorológicos y climáticos extremos desde 1950 (IPCC, 2014). Algunos de estos cambios se han relacionado con la influencia humana e incluyen, una disminución de las temperaturas frías extremas, un aumento de las temperaturas cálidas extremas, un aumento en los niveles de mar extremos y un aumento en el número de eventos de tormentas (oleaje y vientos); y de precipitación intensa en varias regiones.

Las investigaciones que se han llevado hasta ahora se han centrado prácticamente a los impactos relacionados con la subida relativa del nivel del mar (Komar and Allan, 2008; Phillips and Crisp, 2010), prestando menor atención a otros elementos relacionados con el cambio climático. Siendo estos, los eventos climáticos de tipo extremo en la costa, un problema importante en cuanto a su frecuencia y su impacto (Keim et al., 2004; Rangel-Buitrago et al., 2013).

Es prácticamente seguro que la actividad intensa de ciclones tropicales ha aumentado en el Atlántico Norte desde 1970, aunque no existen datos suficientes para la atribución de dicho cambio a cualquier causa en concreto (Bacon and Carter, 1991; Allan and Komar, 2000; Dupuis et al., 2006; Komar and Allan, 2008; Soomere, 2008; Rangel-Buitrago et al., 2013). También es probable que los niveles de alta mar extremos hayan aumentado desde 1970, siendo el resultado de la subida del nivel medio del mar, aunque debido a la escasez de estudios y a la dificultad de distinguir dichos impactos de otras modificaciones en los sistemas costeros, hace que exista poca información disponible sobre los impactos reales de la subida del nivel medio del mar (IPCC, 2014).

Otra modalidad en el estudio y en la observación de la existencia de una tendencia de aumento de eventos climáticos de tipo extremo, son el hecho de que las pérdidas económicas sufridas por los desastres relacionados con el clima se han incrementado considerablemente en las últimas décadas, tanto a nivel mundial como regional (IPCC, 2014).
Los principales eventos climáticos extremos que presentan un riesgo en cuanto sus impactos, están asociados a la ocurrencia simultánea de varios eventos. Por ejemplo, la ocurrencia simultánea de eventos de oleaje y marea meteorológica vinculados a tormentas y descarga fluvial, junto al aumento del nivel medio del mar. En zonas bajas y altamente urbanizadas, la combinación de estos eventos puede dar lugar a severas consecuencias económicas (Losada et al., 2014).

Bajo la premisa de que el calentamiento global es inequívoco, y de que este cambio climático conlleva una amplificación de eventos climáticos de tipo extremo, y de la creación de diferentes impactos y riesgos en sistemas naturales y humanos, la finalidad de este trabajo es analizar los datos existentes para corroborar dicha premisa, así como la de mostrar con mayor claridad las consecuencias que ello supone.

1.2.- Impacto en zonas del litoral.

Como se indicaba al comienzo de la introducción una de las finalidades del trabajo consiste en realizar un análisis del impacto de los eventos asociados al cambio climático, así como su evolución temporal en el litoral, y de forma más concreta en las costas de Cantabria. Para ello, primero es de interés realizar una descripción de las principales características de las zonas costeras y una diferenciación entre los distintos tipos de costas existentes, con el fin de entender mejor los riesgos a los que el litoral cántabro está expuesto.

Las zonas costeras se caracterizan por ser especialmente dinámicas y sensibles a los cambios climáticos, al ser la interfase de distintos ambientes, lo que a su vez la convierte en una zona de muy difícil gestión, al requerir un conocimiento integral de la realidad, que es muy difícil de lograr por la integración de diversos componentes (Dias, et al., 2012). Este carácter de interfase convierte a las zonas costeras en áreas especialmente atractivas para asentamientos humanos por sus diferentes beneficios socioeconómicos. Esto ha llevado a que aproximadamente el 50% de la población (Zazo, 2015) se concentre en zonas cercanas al litoral o a pocos kilómetros de la línea de costa; en lo que se refiere a España, los municipios costeros, con apenas un 7% del territorio, albergan al 45% de la población nacional (Losada, 2008).

La tipología de la costa, esta condicionada tanto por la dinámica litoral, como por su litología y geomorfología (Bardají et al., 2009). Dentro del litoral, es interesante, como se mencionaba con anterioridad, realizar una clasificación de las costas en función de su mayor o menor vulnerabilidad ante los potenciales impactos derivados del cambio climático. Esta vulnerabilidad está relacionada con las características concretas de las unidades ambientales que la constituyen (Cendrero et al., 2005). Debido al tema analizado en el presente documento, la clasificación de los distintos tipos de costas, manteniendo el criterio de una clasificación en función de la vulnerabilidad, se realizará analizando aquellas estructuras que están presentes en el litoral cántabro, obviando dentro de la clasificación otros tipos de costas inexistentes en la región.
Tipos de costas.

a.- Costas bajas asociadas a desembocaduras de cursos de agua.

Suponen un 12% de los 7000 kilómetros de la costa española (Bonachea et al., 2014). Dentro de ellas distinguimos estuarios, bahías y rías; que se caracterizan por ser entrantes de mar en tierra, de dimensiones variables, en las que se desarrollan humedales, extensiones intermareales y playas en el interior o en la entrada. Son costas de un alto impacto potencial ante cualquier cambio ambiental o climático (Cendrero et al., 2005; Bardají et al., 2009).

b.- Playas.

Suponen un 58% de los 7000 kilómetros de la costa española (Bonachea et al., 2014). Constituyen unidades morfoesdimentarias muy dinámicas donde estacionalmente alternan erosión y sedimentación. Se pueden diferencias dos tipos: playas confinadas, que se encuentran limitadas por un acantilado en su parte interna o cabos rocosos en sus laterales; y playas no confinadas, cuando son adyacentes a costas bajas de manera que tienen posibilidades de desplazarse hacia el interior, y que en disposición de sedimentos y vientos que lo permitan, pueden estar asociadas a campos de dunas (Cendrero et al., 2005; Bardají et al., 2009).

c.- Acantilados.

Suponen un 30% de los 7000 kilómetros de la costa española (Bonachea et al., 2014). Los acantilados se diferencian en función de su resistencia y por tanto en función de su vulnerabilidad a la erosión. Se distinguen dos, acantilados duros, formados por rocas compactas resistentes a la erosión (no se verán afectados por los elementos del estudio); y acantilados blandos, constituidos por materiales poco coherentes, fácilmente erosionables y que presentan importantes tasas de retroceso de orden decimétrico o superiores (Cendrero et al., 2005; Bardají et al., 2009).

d.- Puertos.

Zonas rígidas y protegidas por diferentes estructuras que requerirán una re-evaluación de fiabilidad estructural ante distintos eventos asociados al cambio climático (Cendrero et al., 2005).
Impactos.

El estudio de las posibilidades de impacto en la costa requiere la recopilación de numerosos datos y su posterior análisis. Estos datos se pueden obtener de diversas fuentes: clima marítimo de la zona, evolución geomorfológica reciente de la zona, actuaciones humanas en el litoral, y un complemento de datos adquiridos sobre el terreno tanto de medición de procesos naturales, como de evaluación de actuaciones humanas; siendo el análisis de todo ello lo que proporcione una idea del tipo de interacciones que potencialmente pueden existir entre los asentamientos humanos costeros y su dinámica natural (De Andrés et al., 2002; Zazo, 2015).

Los eventos climáticos de tipo extremo suponen la mayor amenaza natural para las comunidades costeras, siendo los causantes de la mayor parte de las pérdidas tanto económicas como para la población en cuanto a fenómenos medioambientales (Murty, 1988; Benavente et al., 2006). Dentro de los impactos que pueden provocar los eventos asociados al cambio climático, es importante destacar que la vulnerabilidad de las zonas costeras corresponde al grado de pérdida, como resultado de la ocurrencia de un fenómeno, o la expectativa de daño sobre un determinado elemento expuesto (Ayala, 1987), principalmente referido a población humana, actividades e infraestructuras (Abad et al., 2010).

Para valorar la vulnerabilidad se pueden considerar tres aspectos principales: por un lado, la presencia de estructuras o bienes con valor de mercado, correspondientes al “capital sujeto a daños” o “socioeconómicas”; por otro lado, no menos importante, la existencia y fragilidad de elementos naturales, sin valor de mercado, pero que representan la base de actividades económicas que podrían verse perjudicadas; y por último, la existencia de unidades naturales valiosas, no necesariamente ligadas de manera directa a actividades productivas, pero con riesgo de deterioro (Varnes, 1984; Cendrero et al. 2005).

Dentro del primer grupo, correspondiente a áreas que pueden sufrir de manera directa el impacto de eventos asociados al cambio climático, se deben tener en cuenta tanto el valor del terreno, así como, el de cultivos, edificios, infraestructuras presentes, y de algunas obras marítimas que pudieran sufrir rebase o inundación, como puertos, paseos marítimos... Por otro lado, dichos eventos pueden acarrear consecuencias en cuanto a la estabilidad de diques se refiere (Cendrero et al., 2005). En el segundo grupo, se encuentran esencialmente las playas confinadas y ciertos humedales o sistemas dunaes que podrían ver modificada su extensión, debido a una variación en la cota de inundación y/o un retroceso/avance de la línea de costa.

Dentro del análisis de daños probables, se debe tener en cuenta, en la medida de lo posible, las pérdidas de “capital”, y las perdidías debidas a las perturbaciones que puedan afectar a las distintas actividades económicas. Este segundo aspecto es el que plantea mayores incertidumbres, debido a la gran dificultad de hacer previsiones a varias décadas vista (Cendrero et al., 2005). Por otro lado, es fundamental tener en cuenta la afección a la población humana (Abad et al., 2010), tanto a nivel de víctimas mortales, como de daños que provoquen incapacidad.
en las personas. Este último aspecto, es en el cual mayor atención se tendrá que poner a la hora de realizar los análisis, ya que, aunque como posteriormente se muestra, el número de víctimas no haya sido, históricamente alto, una falta de incursión de este factor en los análisis podría derivar en una tendencia de aumento en un futuro.

1.3.- Adaptación y Mitigación.

A lo largo de la historia, las personas y las sociedades se han ajustado y enfrentado a escenarios climáticos adversos. A día de hoy, partiendo de una premisa de cambio climático global real, las estrategias preventivas o de adaptación comienzan a formar parte de los procesos de planificación ante el riesgo de desastres naturales. Todo ello se suma a una creciente concienciación a nivel social e institucional, en la que los gobiernos han comenzado a desarrollar políticas de adaptación y mitigación en sus planes de desarrollo siendo palpable a lo largo de todo el territorio (IPCC, 2014; Zazo, 2015).

Los impactos y sus consecuencias ante cualquier escenario considerado plantean la necesidad de tomar medidas, a nivel local, regional y nacional tendentes a mitigar, por un lado y adaptarse, por otro (Losada, 2008; Zazo, 2015). Estas medidas pueden reducir dichos impactos y sus consecuencias, asimismo, la eficiencia de las opciones de adaptación al cambio climático implementadas dependerá enormemente de su interacción con las presiones que el hombre ejerza sobre la costa y sus consiguientes impactos. Los costes de dicha adaptación dependerán de la fachada costera en que se localicen, las opciones de adaptación consideradas, del momento de su implementación y del daño residual que se asuma aceptable (Losada et al., 2014).

Como estrategias preventivas o de adaptación principales, se recomienda actuar de inmediato sobre los factores humanos relacionados con la estabilidad del litoral. Entre estos merecen ser destacados el mantenimiento de descarga y aportes sólidos de los ríos, estabilización de playas y dunas, la construcción de obras para limitar la capacidad de transporte del oleaje incidente y las aportaciones artificiales de sedimento. En otra categoría están las actuaciones para la protección de valores naturales (ordenación rigurosa del territorio para asegurar el mantenimiento y recuperación de zonas valiosas). También se considera necesario, delimitar e inventariar las áreas y elementos afectables por el ascenso del nivel del mar, el oleaje y la marea. Actuar sobre dichos factores, contribuirá en cualquier caso a paliar los futuros impactos del cambio climático independientemente de las incertidumbres asociadas a magnitud de los mismos (Cendrero et al., 2005)

A modo de breve resumen es interesante señalar ciertas estrategias y políticas de adaptación y mitigación (Losada, 2008; Medina et al., 2004):

- Estrategias destinadas a la reducción de incertidumbres asociadas a los posibles efectos del cambio climático, y a la falta de conocimiento y metodologías para su análisis.
- Estrategias encaminadas a la evaluación cualitativa y cuantitativa de la vulnerabilidad de las zonas costeras.

- Estrategias encaminadas a la concienciación social de la problemática inducida en la costa por efecto del cambio climático.

- Estrategias encaminadas a la mitigación de los efectos del cambio climático mediante estrategias de actuación indirectas.

- Políticas encaminadas a la aplicación de estrategias tanto de retroceso, como de adaptación y de defensa.
2.- OBJETIVOS.

En base a lo expuesto anteriormente, el objetivo de este trabajo es contribuir a aportar una visualización más clara, en la medida de lo posible, de la situación actual de la costa de la Comunidad Autónoma de Cantabria frente a los impactos producidos por los episodios climáticos extremos durante los años 2013 y 2014.

A su vez, bajo la premisa de que el calentamiento global es inequívoco, y de que este cambio climático conlleva una amplificación de episodios climáticos de tipo extremo y de su impacto en sistemas naturales y humanos, se pretende analizar, cuando la existencia de datos lo permita, la variación temporal de dichos episodios.

Para lograr estos objetivos se han planteado distintos elementos de estudio:

a.- Determinar si, en los últimos 50 años, aproximadamente, existe un aumento de la frecuencia/magnitud de los daños ocasionados por los episodios climáticos extremos, a partir del análisis de series temporales de datos, con fechas y daños producidos.

b.- Analizar y comparar las inversiones realizadas a consecuencia de los daños producidos durante los episodios climáticos extremos ocurridos en 2013 y 2014.

3.- METODOLOGÍA.

La metodología llevada a cabo, se basa en la obtención de datos sobre los distintos elementos descritos y el análisis de su evolución temporal.

Para ello, y debido a la escasez de datos a los que se ha podido tener acceso, se han realizado análisis de las Inundaciones / Embate de mar, de los daños producidos y de su evolución temporal a nivel nacional y provincial, tanto en daños en los bienes, como a personas. Por otro lado, se ha realizado un análisis particular de los daños ocasionados en la Comunidad Autónoma de Cantabria durante los años 2013 y 2014.

Además, se ha realizado una cartografía de las zonas afectadas mediante la utilización de herramientas de Sistemas de Información Geográfica (SIG), utilizando ArcGis, en el cual se delimita zonas de estudio y zonas afectadas.

Los datos utilizados para los análisis provienen del Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA), del Consorcio de Compensación de Seguros (CCS), del Instituto Geográfico Nacional, del Panel Intergubernamental sobre el Cambio Climático (IPCC).
4.- FACTORES RELACIONADOS CON LA FRECUENCIA Y LOS DAÑOS.

Siguiendo los objetivos marcados y como paso previo al análisis de los daños ocasionados por los temporales marinos durante los años 2013 y 2014, a continuación se realiza un estudio de la evolución histórica de los daños ocasionados tanto en los bienes, como en las personas por las Inundaciones / Embate de mar, a nivel nacional, nivel autonómico, y en la comparativa de Cantabria con Asturias y Bizkaia, ya que presentan características geomorfológicas y espaciales similares. El análisis que sigue se ha basado en los datos proporcionados por el CCS sobre los expedientes tramitados e indemnizaciones sobre Inundaciones / Embate de mar en series temporales comprendidas entre 1971-2014 y 1994-2014 para los daños en los bienes a nivel nacional y a nivel autonómico, respectivamente; y entre 1987-2014, para los daños en las personas (CCS Estadística Riesgos Extraordinarios 1971-2014, 2014). Las diferencias temporales entre las series y la falta de un análisis de los daños en las personas para Cantabria se debe a la falta de datos para esas variables. Los importes de las Indemnizaciones, como indica el CCS, han sido actualizados a euros, a fecha de 31/12/2014, con la intención de obtener una visualización global lo más fidedigna posible.

4.1.- Inundación / Embate de Mar.

Daños en los bienes.

La Figura 1 muestra el Nº de Expedientes recogidos por Inundaciones / Embate de mar a nivel nacional durante la serie temporal 1971-2014. Se observa una tendencia alcista, pese a que cabe esperar que debido a la extensión de la serie, la calidad y fiabilidad de los datos disminuya según nos alejamos de la actualidad (García, 2013). Es por ello que se marcan dos líneas de tendencia, una exponencial y otra lineal. En ambas se observa tendencia alcista, aunque según el observador, podría dar lugar a predicciones de escenarios más o menos alarmistas. Es al compararlo con las Indemnizaciones otorgadas por el CCS (Figura 2) y la tendencia que refleja, cuando podemos pensar que la tendencia “real” podría ser la de una tendencia alcista lineal.

El total de expedientes tramitados, a nivel nacional, ascendió a 519.191, y se remuneró con 5.405.368.651€ en Indemnizaciones a lo largo de la serie temporal estudiada.

La Figura 3 muestra el Nº de Expedientes recogidos por Inundaciones / Embate de Mar en Cantabria durante la serie temporal 1994-2014. Se observa una tendencia alcista y cabe esperar, a diferencia de las anteriores, que debido a la extensión de la serie, la calidad y fiabilidad de los datos sea media/alta. En este caso la tendencia alcista es lineal, por lo que se podría eliminar un previsión de un escenario tan alarmista como en uno de los casos planteados. Al compararlo con las Indemnizaciones otorgadas por el CCS (Figura 4) en Cantabria, se corrobora una misma tendencia.
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

Figura 1.- Nº de Expedientes relacionados a daños en los bienes por Inundaciones / Embate de Mar, a nivel nacional, recogidos por el CCS entre 1971-2014 y su líneas de tendencia. Datos en Tabla 1 del Anexo.

Figura 2.- Indemnizaciones por daños en los bienes relacionados a Inundaciones / Embate de Mar, a nivel nacional, otorgadas por el CCS entre 1971-2014 y su línea de tendencia. Datos en Tabla 1 del Anexo.
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

Figura 3.- Nº de Expedientes relacionados a daños en los bienes por Inundaciones / Embate de Mar, en Cantabria, recogidos por el CCS entre 1971-2014 y su línea de tendencia. Datos en Tabla 2 del Anexo.

Figura 4.- Indemnizaciones por daños en los bienes relacionados a Inundaciones / Embate de Mar, en Cantabria, otorgadas por el CCS entre 1971-2014 y su línea de tendencia. Datos en Tabla 2 del Anexo.
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

Tal y como se comenta en la introducción de este apartado, las Figuras 5 y 6, mostradas a continuación, muestra la comparativa de los datos existentes en cuanto a la frecuencia de Nº de Expedientes recogidos de Inundaciones / Embate de Mar en Cantabria, Asturias y Bizkaia durante la serie temporal 1994-2014; así como las Indemnizaciones otorgadas por el CCS en la misma serie temporal.

Figura 5.- Nº de Expedientes relacionados a daños en los bienes por Inundaciones / Embate de Mar, en Cantabria, Asturias y Bizkaia recogidos por el CCS entre 1971-2014 y sus líneas de tendencia. Datos en Tabla 3 del Anexo.

Figura 6.- Indemnizaciones por daños en los bienes relacionados a Inundaciones / Embate de Mar, en Cantabria, Asturias y Bizkaia otorgadas por el CCS entre 1971-2014 y sus líneas de tendencia. Datos en Tabla 3 del Anexo.
Daños en los personas.

Los temporales no solo producen daños en los bienes, si no que, también pueden originar daños en las personas de dos formas, víctimas mortales o incapacidad. En las figuras que se muestran a continuación se pueden observar los daños ocasionados a nivel nacional durante la serie temporal 1987-2014, en cuanto al Nº de Expedientes (Figura 7) y las Indemnizaciones otorgadas (Figura 8).

En la Tabla 5 del Anexo se detalla la relación de datos en función al tipo de lesión para la serie temporal 1987-2014 según el Nº de Expedientes tramitados.

![Figura 7.- Nº de Expedientes relacionados a daños en las personas por Inundaciones / Embate de Mar, a nivel nacional, recogidos por el CCS entre 1987-2014 y su línea de tendencia. Datos en Tabla 4 del Anexo.](image)

![Figura 8.- Indemnizaciones por daños en las personas relacionados a Inundaciones / Embate de Mar, a nivel nacional, recogidos por el CCS entre 1987-2014 y su línea de tendencia. Datos en Tabla 4 del Anexo.](image)
5. TEMPORALES DE 2013/2014 Y SUS IMPACTOS EN LA COSTA DE CANTABRIA.

Tal como se establece en los objetivos, en este apartado se presenta un análisis de los daños y de las inversiones llevadas a cabo, a causa de los temporales acaecidos en 2013 y 2014 (las actuaciones del 2014 contenidas en el Plan Litoral del Ministerio de Agricultura y Medio Ambiente, 2014), en Cantabria.

Siguiendo este objetivo, se ha considerado que la mejor forma de ofrecer una visualización clara y directa de los efectos de estos temporales y sus repercusiones económicas, es la de exponer todos los casos de los cuales se han obtenido información y de las inversiones realizadas para sufragar los desperfectos junto con archivos visuales, cuando estén disponibles. A su vez, se muestran los datos publicados por el CCS sobre las siniestralidades más relevantes del ejercicio en Cantabria (Informe de la actividad CCS, 2014).

Los casos expuestos a continuación se han agrupado según el año de ocurrencia o la localidad en la que tuvieron lugar. La Figura 9 muestra la localización de los distintos municipios afectados por los temporales de 2013/2014. La misma se adjunta en el Anexo (Figura 1 del Anexo) para una mejor visualización. Además, en el Anexo se incluye dos tabla (Tabla 6-7) en las cuales se muestran a modo resumen el conjunto de municipios, las actuaciones llevadas a cabo, y las inversiones realizadas. Las imágenes de los temporales de 2013 y 2014, que se muestran a lo largo del apartado 5, se han tomado de la página web del Ministerio de Agricultura y Medio Ambiente.

[Links a las páginas web]

Figura 9.- Localización de los municipios afectados por los temporales de 2013 y 2014, en Cantabria.
5.1. Temporales de 2013.

Marzo 2013.

+ Actuación: Alimentación de arena en la playa de La Magdalena.
+ Inversión realizada: 38.335,90€

![Figura 10.- Playa de La Magdalena (Santander) antes de la actuación.](image)

Julio 2013.

+ Actuación: Reparaciones en pasarela de madera en la playa de Galizano.
+ Inversión realizada: 973,41€

![Figura 11.- Pasarela de madera en la playa de Galizano (Ribamontán al Mar) antes de la actuación.](image)

+ Actuación: Ejecución escaleras de acceso a la playa de San Julián, en Liendo.
+ Inversión realizada: 5.172,94€

![Figura 12.- Escaleras de acceso a la playa de San Julián, en Liendo antes de la actuación.](image)
Noviembre 2013.

+ **Actuación:** Reparación provisional acceso de la playa de Oyambre por Pájaro Amarillo.
+ **Inversión realizada:** 3.983,20€

+ **Actuación:** Relleno de socavón en Luchana.
+ **Inversión realizada:** 33.451,10€

![Figura 13.- Socavón en Luchana antes de la actuación.](image)

+ **Actuación:** Reposición de escollera en la playa Del Tostadero.
+ **Inversión realizada:** 5.977,50€

![Figura 14.- Escollera en la playa Del Tostadero (San Vicente de la Barquera) antes de la actuación.](image)

+ **Actuación:** Alimentación de arenas a la playa de la Magdalena 2013.
+ **Inversión realizada:** 81.799,09€
5.2.- **Temporales 2014.**

+ **Arnuero:** Reparación del paseo marítimo de Isla, con un presupuesto de 18.666,57€.

![Figura 15. Paseo marítimo de Isla antes de la actuación.](image1)

+ **Bareyo:** Demolición y retirada de restos de accesos y ejecución de nuevo acceso e instalación de baño en la playa de Ajo, con un presupuesto de 40.866,75€ y 2.160,00€ respectivamente.

![Figura 16.- Acceso antes de la actuación.](image2) ![Figura 17.- Baño antes de la actuación.](image3)

+ **Comillas:** Retirada restos acceso y ejecución de uno nuevo, con un presupuesto de 67.023,41€.

![Figura 18.- Acceso antes de la actuación.](image4)
+ Castro-Urdiales: Ejecución de botaolas, reposición/reparación de balastrada, reposición de enlosado y reposición de jardineras en la playa de Brazomar; reposición de escollera y balastrada en la playa de Cotolino; recopilado de piedras sobre el talud y reparación de accesos en la playa de Dícido; reposición de solárium y acera en la playa de La Atalaya; desmontado y retirada de barandilla y albardillas deterioradas junto con reposición de barandillas altas y bajas en la playa de Ostende; con presupuesto de 46.542,41€ / 39.640,44€ / 17.436,25€ / 24.838,47€ / 18.457,39€ y 29.277,84€ respectivamente.

Figura 19.- Balastrada playa Brazomar antes de actuación.

Figura 20.- Balastrada playa Cotolino antes de actuación.

Figura 21.- Estado playa de Dícido antes de actuación.

Figura 22.- Estado playa de La Atalaya antes de actuación.

Figura 23.- Barandilla playa de Ostende antes de actuación.
Laredo: Plantación de refuerzo en las dunas del puntal de Laredo; bypass de arena desde la zona de acopio en desembocadura del río Mantilla para constituir una duna en playa Salvé; reposición de balaustrada; regeneración ambiental; reposición/modificación del trazado de la pasarela para su adaptación a la erosión del sistema dunar; retirada de la pasarela y ejecución acceso en El Puntal; reposición de arenas (Fase I y Fase II) ; con presupuesto de 60.282,10€ / 20.073,90€ / 41.617,69€ / 122.561,22€ / 3.190,23€ / 15.198,30€ y 1.527.169,32€ respectivamente.
+ **Miengo:** Retirada de restos, cierre dunar y reparación accesos a la playa de Cuchía; con presupuesto de 12.752,92€.

![Figura 30.- Playa de Cuchía antes de actuación.](image)

+ **Piélagos:** Reparación de las escaleras de hormigón en la playa de Somocuevas y reparación de accesos en la playa de Liencres, con presupuesto de 11.118,73€ y 16.789,55€ respectivamente.

![Figura 31.- Playa de Somocuevas antes de actuación.](image)
![Figura 32.- Playa de Liencres antes de actuación.](image)

+ **Ribanmontán al Mar:** Plantación de refuerzo en las dunas de Somo y Loredo; reparación de muretes de mampostería en el paseo de Somo; reparación de la pasarela de madera, relleno de rampas con piedra escollera en la playa de Galizano; reposición pasarela de madera en Loredo con un presupuesto de 60.228,96€ / 26.656,61€ / 12.562,06€ y 93.549,46€ respectivamente.

![Figura 33.- Murete paseo Somo antes de actuación.](image)
![Figura 34.- Pasarela de madera antes de actuación.](image)
+ **San Vicente de la Barquera**: Reparación escollera del parque, recalce de servicios, rampas y duchas, y ejecución de escalera de acceso en la playa de Oyambre; recolocación de baños, acometidas y recolocación de duchas en la playa de Merón y Bederna; reparación de pasarelas en la playa de Merón; con un presupuesto de 37.995,74€ / 19.458,31€ y 6.002,48€ respectivamente.

![Figura 35.- Acceso Playa de Oyambre antes de actuación.](image)

![Figura 36.- Estado antes de actuación.](image)

+ **Santillana del Mar**: Reparación de tarimas y pasarela en la playa de Santa Justa, con un presupuesto de 1.406,91€.

![Figura 37.- Playa de Santa Justa antes de actuación.](image)

+ **Santander - Ribamontán al Mar**: Reposición de arenas en la playa del Sardinero, Somo y Loredo con un presupuesto de 674.817,60€.

![Figura 38.- Estado antes de actuación.](image)
+ Santander: Reposición de balaustrada en la playa de Mataleñas, reparación barandilla, reposición peanas verticales de piedra, reparación enlosado y albardillas en la playa de Molinucos; alimentación extra de arena en la Segunda playa del Sardinero; refuerzo en la cimentación de dos tramos de muro ubicados en la Segunda playa del Sardinero, en las zonas del Bar “El parque” y de Piquio; reparaciones en las playas del Sardinero y el Camello; reposición de la pasarela de madera con acceso a discapacitados; bypass de arena para la regularización de la superficie de la playa mediante empuje desde la zona central de la playa hacia sus dos extremos; alimentación de arenas en la playa de la Magdalena; trabajos de reparación en el paseo marítimo en el Sardinero, zona Piquio; con un presupuesto de 17.938,88€ / 60.475,80€ / 119.053,91€ / 81.913,71€ / 18.462,88€ / 5.962,27€ / 366.602,40€ y 43.287,39€ respectivamente.

Figura 39.- Mataleñas antes de actuación.

Figura 40.- Cimentación antes de actuación.

Figura 41.- Playas Sardinero y Camellos antes de actuación.

Figura 42.- Estado antes de Bypass de arena.

Figura 43.- Playa de Mataleñas antes de actuación.

Figura 44.- Paseo marítimo antes de actuación.
+ **Santoña**: Reparación barandilla y albardilla en el pavimento donde se asienta, reposición 20m con tarima de madera en playa de San Martín y reparación de rampas y escalera de acceso a playa de Berría; con un presupuesto de 23.509,46€ / 16.088,16€ y 21.451,24€ respectivamente.

![Figura 45.- Barandilla/pavimento antes de actuación.](image)

![Figura 46.- Tarima de madera antes de actuación.](image)

+ **Suances**: Reposición del enlosado en las gradas en el paseo marítimo y reposición del acceso a la playa de Tagle, con un presupuesto de 36.656,44€ y 8.315,36€ respectivamente.

![Figura 47.- Enlosado en gradas antes de actuación.](image)

![Figura 48.- Acceso playa de Tagle antes de actuación.](image)

+ **Val de San Vicente y Valdáliga**: Reposición de la escollera en la playa de La Arena y Amio; reposición de losetas en el paseo de Unquera; reparación barandilla y canalizaciones de duchas; con un presupuesto de 3.670,27€ / 1.468,11€ y 2.523,84€ respectivamente.

![Figura 49.- Escollera antes de actuación.](image)

![Figura 50.- Barandilla y canalizaciones antes de actuación.](image)
Como se comentó en la introducción de este apartado, en esta última sección, se muestran los datos publicados por el CCS en su Informe Anual de 2014, sobre las siniestralidades más relevantes del ejercicio en Cantabria (Informe de la actividad CCS, 2014), en modo de tabla.

Siniestralidades más relevantes del ejercicio en Cantabria

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Causa</th>
<th>Nº de Expedientes</th>
<th>Coste total (miles de euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/01/14</td>
<td>Inundación - Embate de Mar</td>
<td>493</td>
<td>4.363,90</td>
</tr>
<tr>
<td>03/03/14</td>
<td>Inundación - Embate de Mar</td>
<td>108</td>
<td>1.588,49</td>
</tr>
</tbody>
</table>

Tabla 2.- Siniestralidades más relevantes del ejercicio 2014 en Cantabria (Informe de la actividad CCS, 2014).

Una vez expuestos los daños producidos por los temporales según las inversiones que han sido realizadas para sufragar los impactos en diferentes municipios de la costa de Cantabria, se muestra a continuación un mapa (Figura 51) en el que se representa una relación de los municipios afectados junto con una simbología proporcional a la cantidad total de inversión realizada en cada municipio afectado. Esta imagen se adjunta en el Anexo (Figura 2 del Anexo) para una mejor visualización.

Figura 51.- Relación de inversiones realizadas por los temporales de 2013/2014, con indicación de los Municipios afectados.
6.- ANÁLISIS Y DISCUSIÓN DE LOS RESULTADOS OBTENIDOS.

Tal como se ha expuesto en la introducción, este trabajo pretende realizar un análisis de los efectos de los eventos asociados al cambio climático que implican un impacto sobre el litoral, junto con un análisis temporal que mejore la comprensión de la situación actual y que, por lo tanto, proporcione una base para futuras líneas de investigación encaminadas hacia una mejora de los procedimientos de previsión y mitigación de los impactos producidos por Inundaciones / Embate de Mar.

La primera tarea llevada a cabo para alcanzar los objetivos del trabajo, ha sido la adquisición de datos. En este sentido, las principales problemáticas encontradas se refieren a la cantidad de datos, su calidad y en ciertos casos, disponibilidad de los mismos.

Aunque, en las últimas décadas, la cantidad y disponibilidad de datos ha ido mejorando notablemente, en ciertos casos, como el que aquí se ha tratado de analizar, la información ha resultado algo complicada de conseguir e incompleta. Con esta afirmación, se hace alusión a la información obtenida sobre las actuaciones realizadas a lo largo de los años 2013 y 2014, que pese a aportar datos sobre actuaciones, no vienen acompañados con datos más detallados correspondientes a los temporales causantes de dichos impactos.

Por otro lado, a la hora de interpretar los resultados y la tendencia evolutiva de los diferentes elementos analizados, hay que tener en cuenta que los datos históricos recopilados, por su propia naturaleza, pueden falsear algo el análisis, debido a la incapacidad, en algunos casos, de poder corroborar su calidad.

Todo ello, ha de ser tenido siempre en cuenta, sobre todo cuando se analizan evoluciones temporales y se intenta identificar modelo para una evolución futura.

En un segundo momento, se ha pasado a la observación de las tendencias, a partir de los datos a los que se ha tenido acceso, tanto para lo que se refiere a datos históricos disponibles como, a datos sobre los impactos producidos por los temporales de 2013 y 2014. Dichos análisis son los que se exponen a continuación.

A la hora de analizar la frecuencia en el número de eventos de Inundaciones / Embate de Mar, a nivel nacional, se ha considerado basarse en los datos relacionados a los expedientes tramitados por el CCS sobre daños en los bienes, a pesar de que la más lógica elección hubiese sido la de considerar los daños a personas, por su importancia. Esta elección, se debe a dos motivos fundamentales. El primero es que la cantidad de datos proporcionados para los daños en las personas es inferior, reduciéndose la serie temporal en 17 años; y el segundo motivo es que el análisis de frecuencia a lo largo de la serie temporal estudiada viendo la tendencia obtenida para los daños en las personas (Figuras 7 y 8), se ha considerado que no es representativa en cuanto a
la obtención de conclusiones sobre la frecuencia, ya que, el hecho de que no presenten una tendencia en aumento puede verse condicionada, no por la disminución del número de eventos acaecidos durante la serie, sino por la evolución en cuanto a los medios de prevención y comunicación ante eventos extremos. Pese a ello, cabe señalar que el número total de expedientes tramitados para los daños en las personas a lo largo de la serie 1987-2014, fue de 174, con 5.735.457€ en indemnizaciones.

Es por lo que, tras lo expuesto anteriormente, y según los datos de daños en los bienes, cabe destacar que la frecuencia muestra un claro incremento a lo largo de la serie temporal 1971-2014. Este hecho, tal como se muestra y se comenta en el apartado 4.1, queda perfectamente reflejado en las líneas de tendencia obtenidas a partir de los datos de número de expedientes recogidos, como al de indemnizaciones otorgadas por el Consorcio de Compensación de seguros (Figuras 1 y 2).

Por otro lado, este aumento en la frecuencia también queda plasmado en las líneas de tendencia obtenidas para los datos recogidos a nivel autonómico en Cantabria (Figuras 3 y 4, Figuras 5 y 6), así como en Bizkaia o Asturias (Figura 5 y 6), para la serie temporal 1994-2014. Es en esta comparativa, siendo el objetivo de este trabajo el análisis concreto de la situación de Cantabria, cuando es observable que en el caso particular de Cantabria la tendencia, pese a ser en aumento, es menor que en las otras dos provincias estudiadas, tal y como se muestra en las Figuras 5 y 6.

Por último, en cuanto al análisis de los datos históricos, cabe señalar, que el aumento de la frecuencia del número de expedientes tramitados, puede corresponderse por un lado a una tendencia de aumento en el número de eventos que provocan impactos en el litoral o, o por otro lado, a un aumento de la intensidad de los mismos, sin que haya un aumento necesario del número eventos acontecidos. Tal y como se comenta anteriormente, es imposible, a partir de los datos existentes, realizar una afirmación certera de cual de las dos opciones es la causante del aumento de la frecuencia de expedientes tramitados a lo largo de la serie.

En el caso del análisis referido a las consecuencias de los temporales de 2013 y 2014 a lo largo del litoral cántabro, estas han quedado claramente plasmadas en los datos recogidos y en las imágenes mostradas a lo largo del apartado 5. Siendo también palpable que el número, tanto en el de localidades como en la inversión realizada, ha crecido de manera considerable de 2013 a 2014. Ascendiendo la inversión realizada en 2013 a 169.693,14€ y en 2014 a 3.895.775,74€.

Esta diferencia en las inversiones realizadas en ambos años, se ha considerado, como en el caso del análisis de los datos históricos, que puede deberse a dos factores. El primero, es que el año 2013 fuera un año en el que no acontecieron tanto eventos climáticos extremos, en su comparación con los correspondientes a 2014, según la cantidad de localidades afectadas o inversiones realizadas destinadas a sufragar los daños producidos; factor que concordaría con una tendencia en aumento de la frecuencia. El segundo factor, es que pese a que en 2014 se hayan
realizado más inversiones, estas no tienen porque estar directamente relacionadas a un aumento en la frecuencia de los eventos acontecidos, pero por el contrario, dicha frecuencia si estar relacionada, como indican algunos autores (Lozano et al., 2004), a un aumento en la intensidad, impacto y daños producidos por dichos eventos, en relación con los acontecidos a lo largo de 2013.

Por último, es interesante señalar, que como se comentaba al comienzo de este apartado, el análisis realizado anteriormente, de los datos correspondientes a las inversiones realizadas a lo largo de 2013 y 2014, puede verse alterado debido a la problemática que plantea la adquisición de los datos relacionados con las inversiones realizadas en estos años. La problemática en este caso concreto se centra en que, la información correspondiente a las inversiones, dado que en las fuentes de información no se indica, puede no estar directamente ligada a eventos acontecidos en esos años, pudiendo darse el caso de que inversiones realizadas en 2013 y 2014 se corresponda a eventos acontecidos en años anteriores. Esto plantea una problemática en cuanto a la realización de conclusiones, pese a que cabe esperar que las posibles modificaciones en los resultados no alterasen la tendencia general observada.
7.- CONCLUSIONES Y FUTURAS LÍNEAS DE TRABAJO.

Los datos obtenidos para este trabajo muestran que a lo largo de los últimos años se ha producido un incremento de los daños producidos por eventos climáticos extremos, tanto en el número de expedientes tramitados, como en el de indemnizaciones e inversiones, en el conjunto de las costas españolas, así como en el caso concreto de la costa de Cantabria.

Este resultado, como se comentaba con anterioridad, parte de la premisa de que, la recopilación y disposición de los datos plantea interrogantes en diversos aspectos. Un primero, en cuanto a su fiabilidad, relacionada con la antigüedad de parte de ellos, así como en cuanto a su “imprecisión”, relacionado a la falta de información de fechas concretas de ocurrencia de ciertos eventos y de la carencia de información de la relación nº de eventos - intensidad. Un segundo factor estaría relacionado a la falta de información de calidad y más específica, de los daños ocasionados en las personas a niveles más allá del nacional, ya que es éste es el elemento al que mayor atención se debería de otorgar.

A pesar de la premisa de partida sobre los datos analizados, los resultados muestran una bastante clara tendencia de aumento de los impactos causado por los temporales, siendo contrastable en los datos específicos para la afección del litoral cántabro durante los años 2013 y 2014. En estos años las inversiones, como se ha indicado, ascendieron a 169.693,14€, en 2013, y a 3.895.775,74€, en 2014.

A la vista de los resultados obtenidos, y a partir de la información aportada sobre el cambio climático global, y sus predicciones de futuro al comienzo del documento; se considera que sería de interés poder profundizar más en el análisis, considerando un intervalo temporal más amplio, y adentrándose en el análisis de las características de los elementos expuestos al riesgo (personas/bienes). Estos nuevos enfoques permitirían una mejor comprensión de las diferentes componentes del Riesgo y, por tanto, permitirían un mejor diseño de gestión del mismo.

Por todo ello, una de las líneas futuras de trabajo que se sugiere, es la de realizar una recopilación contrastada de la información referente a los impactos ocasionados por eventos climáticos extremos, en series temporales, tan largas como la calidad de los datos lo permita, para el cálculo y la obtención de mejores líneas de tendencia, que permitan realizar mejores predicciones de futuro. Otra de las líneas, iría encaminada a un estudio exhaustivo de los impactos más recientes, para el establecimiento de medidas de adaptación y mitigación encaminadas a reducir, en la medida de lo posible, futuras pérdidas socioeconómicas.
BIBLIOGRAFÍA.

Referencias Bibliográficas.

Convención Marco de las Naciones Unidas sobre el Cambio Climático, 1992.

Páginas web.

http://www.consorseguros.es/web/c/document_library/get_file?uuid=548d4f59-b6c5-b06b-9dbcef790f&groupId=10124

http://www.consorseguros.es/web/documents/10124/12870/INFORME_ANUAL.pdf/99ac5fe0-f270-4d63-b926-ad8bd2b45dfb

IGN (Instituto Geográfico Nacional), 2015. Centro Nacional de Información Geográfica. Ministerio de Fomento. Disponible en:
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp

IPCC (Panel Intergubernamental sobre el Cambio Climático), 2015. Quinto Informe de Evaluación. Disponible en:

MAGRAMA (Ministerio de Agricultura, Alimentación y Medio Ambiente), 2015. Costas y Medio Marino, Actuaciones Protección de la Costa en Cantabria, Mantenimiento. Disponible en:
ANEXO
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

TABLAS

TABLA 1.- N° de Expedientes / indemnizaciones de daños en los bienes, a nivel nacional, para la serie temporal 1971-2014, por Inundación / Embate de Mar.

<table>
<thead>
<tr>
<th>Año</th>
<th>N° de Expedientes</th>
<th>Indemnizaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1971</td>
<td>31</td>
<td>18.652</td>
</tr>
<tr>
<td>1972</td>
<td>6</td>
<td>44.990</td>
</tr>
<tr>
<td>1973</td>
<td>4</td>
<td>67.152</td>
</tr>
<tr>
<td>1974</td>
<td>4</td>
<td>37.971</td>
</tr>
<tr>
<td>1975</td>
<td>41</td>
<td>499.851</td>
</tr>
<tr>
<td>1976</td>
<td>96</td>
<td>1.702.841</td>
</tr>
<tr>
<td>1977</td>
<td>3.715</td>
<td>65.387.001</td>
</tr>
<tr>
<td>1978</td>
<td>480</td>
<td>9.194.080</td>
</tr>
<tr>
<td>1979</td>
<td>222</td>
<td>10.526.798</td>
</tr>
<tr>
<td>1980</td>
<td>1.503</td>
<td>14.072.805</td>
</tr>
<tr>
<td>1981</td>
<td>751</td>
<td>15.302.395</td>
</tr>
<tr>
<td>1982</td>
<td>7.106</td>
<td>192.690.746</td>
</tr>
<tr>
<td>1983</td>
<td>15.471</td>
<td>678.651.947</td>
</tr>
<tr>
<td>1984</td>
<td>87</td>
<td>1.072.692</td>
</tr>
<tr>
<td>1985</td>
<td>163</td>
<td>1.023.574</td>
</tr>
<tr>
<td>1986</td>
<td>586</td>
<td>9.614.388</td>
</tr>
<tr>
<td>1987</td>
<td>23.691</td>
<td>336.339.940</td>
</tr>
<tr>
<td>1988</td>
<td>4.756</td>
<td>101.724.816</td>
</tr>
<tr>
<td>1989</td>
<td>16.641</td>
<td>284.510.345</td>
</tr>
<tr>
<td>1990</td>
<td>2.454</td>
<td>30.249.847</td>
</tr>
<tr>
<td>1991</td>
<td>6.895</td>
<td>47.452.275</td>
</tr>
<tr>
<td>1992</td>
<td>6.221</td>
<td>69.705.192</td>
</tr>
<tr>
<td>1993</td>
<td>4.768</td>
<td>39.663.433</td>
</tr>
<tr>
<td>1994</td>
<td>6.867</td>
<td>112.167.373</td>
</tr>
<tr>
<td>1995</td>
<td>12.897</td>
<td>112.735.102</td>
</tr>
<tr>
<td>1996</td>
<td>14.038</td>
<td>144.277.137</td>
</tr>
<tr>
<td>1997</td>
<td>28.206</td>
<td>298.908.538</td>
</tr>
<tr>
<td>1998</td>
<td>4.750</td>
<td>54.836.055</td>
</tr>
<tr>
<td>1999</td>
<td>14.092</td>
<td>117.507.382</td>
</tr>
<tr>
<td>2000</td>
<td>17.967</td>
<td>188.635.708</td>
</tr>
<tr>
<td>2001</td>
<td>15.681</td>
<td>141.264.740</td>
</tr>
<tr>
<td>2002</td>
<td>18.810</td>
<td>146.372.523</td>
</tr>
<tr>
<td>2003</td>
<td>12.313</td>
<td>98.568.606</td>
</tr>
<tr>
<td>2004</td>
<td>18.482</td>
<td>115.237.393</td>
</tr>
<tr>
<td>2005</td>
<td>12.111</td>
<td>96.788.041</td>
</tr>
<tr>
<td>2006</td>
<td>19.671</td>
<td>171.069.933</td>
</tr>
<tr>
<td>2007</td>
<td>33.959</td>
<td>249.218.257</td>
</tr>
<tr>
<td>2008</td>
<td>33.329</td>
<td>263.141.542</td>
</tr>
<tr>
<td>2009</td>
<td>27.874</td>
<td>187.786.558</td>
</tr>
<tr>
<td>2010</td>
<td>34.952</td>
<td>325.041.064</td>
</tr>
<tr>
<td>2011</td>
<td>22.924</td>
<td>176.167.646</td>
</tr>
<tr>
<td>2012</td>
<td>33.746</td>
<td>251.461.536</td>
</tr>
<tr>
<td>2013</td>
<td>18.793</td>
<td>120.198.451</td>
</tr>
<tr>
<td>2014</td>
<td>22.037</td>
<td>124.431.337</td>
</tr>
</tbody>
</table>

TOTAL 519.191 5.405.368.653
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

TABLA 2.- Nº de Expedientes / indemnizaciones de daños en los bienes, en Cantabria, para la serie temporal 1994-2014 por Inundación / Embate de Mar.

<table>
<thead>
<tr>
<th>Año</th>
<th>Nº de Expedientes</th>
<th>Indemnizaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1994</td>
<td>277</td>
<td>2.002.250</td>
</tr>
<tr>
<td>1995</td>
<td>39</td>
<td>266.121</td>
</tr>
<tr>
<td>1996</td>
<td>647</td>
<td>3.980.832</td>
</tr>
<tr>
<td>1997</td>
<td>195</td>
<td>851.311</td>
</tr>
<tr>
<td>1998</td>
<td>96</td>
<td>375.337</td>
</tr>
<tr>
<td>1999</td>
<td>17</td>
<td>35.106</td>
</tr>
<tr>
<td>2000</td>
<td>167</td>
<td>879.108</td>
</tr>
<tr>
<td>2001</td>
<td>47</td>
<td>150.029</td>
</tr>
<tr>
<td>2002</td>
<td>128</td>
<td>573.517</td>
</tr>
<tr>
<td>2003</td>
<td>286</td>
<td>1.453.132</td>
</tr>
<tr>
<td>2004</td>
<td>273</td>
<td>1.215.669</td>
</tr>
<tr>
<td>2005</td>
<td>126</td>
<td>1.658.603</td>
</tr>
<tr>
<td>2006</td>
<td>1.234</td>
<td>6.718.532</td>
</tr>
<tr>
<td>2007</td>
<td>101</td>
<td>447.915</td>
</tr>
<tr>
<td>2008</td>
<td>654</td>
<td>3.037.650</td>
</tr>
<tr>
<td>2009</td>
<td>396</td>
<td>2.770.146</td>
</tr>
<tr>
<td>2010</td>
<td>833</td>
<td>4.171.245</td>
</tr>
<tr>
<td>2011</td>
<td>158</td>
<td>398.361</td>
</tr>
<tr>
<td>2012</td>
<td>59</td>
<td>233.690</td>
</tr>
<tr>
<td>2013</td>
<td>1.144</td>
<td>3.922.973</td>
</tr>
<tr>
<td>2014</td>
<td>1.040</td>
<td>6.295.219</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.917</td>
<td>41.436.746</td>
</tr>
</tbody>
</table>

TABLA 3.- Nº de Expedientes / indemnizaciones de daños en los bienes, en Cantabria, Bizkaia y Asturias para la serie temporal 1994-2014 por Inundación / Embate de Mar.

<table>
<thead>
<tr>
<th>Año</th>
<th>Cantabria</th>
<th>Bizkaia</th>
<th>Asturias</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nº Expedientes</td>
<td>Indemnizaciones</td>
<td>Nº Expedientes</td>
</tr>
<tr>
<td>1995</td>
<td>39</td>
<td>266.121</td>
<td>149</td>
</tr>
<tr>
<td>1997</td>
<td>195</td>
<td>851.311</td>
<td>65</td>
</tr>
<tr>
<td>1998</td>
<td>96</td>
<td>375.337</td>
<td>208</td>
</tr>
<tr>
<td>1999</td>
<td>17</td>
<td>35.106</td>
<td>80</td>
</tr>
<tr>
<td>2000</td>
<td>167</td>
<td>879.108</td>
<td>24</td>
</tr>
<tr>
<td>2001</td>
<td>47</td>
<td>150.029</td>
<td>33</td>
</tr>
<tr>
<td>2002</td>
<td>128</td>
<td>573.517</td>
<td>3.652</td>
</tr>
<tr>
<td>2003</td>
<td>286</td>
<td>1.453.132</td>
<td>27</td>
</tr>
<tr>
<td>2004</td>
<td>273</td>
<td>1.215.669</td>
<td>22</td>
</tr>
<tr>
<td>2005</td>
<td>126</td>
<td>1.658.603</td>
<td>175</td>
</tr>
<tr>
<td>2006</td>
<td>1.234</td>
<td>6.718.532</td>
<td>88</td>
</tr>
<tr>
<td>2008</td>
<td>654</td>
<td>3.037.650</td>
<td>5.187</td>
</tr>
<tr>
<td>2009</td>
<td>396</td>
<td>2.770.146</td>
<td>1.567</td>
</tr>
<tr>
<td>2010</td>
<td>833</td>
<td>4.171.245</td>
<td>1.252</td>
</tr>
<tr>
<td>2012</td>
<td>59</td>
<td>233.690</td>
<td>3</td>
</tr>
<tr>
<td>2013</td>
<td>1.144</td>
<td>3.922.973</td>
<td>376</td>
</tr>
<tr>
<td>2014</td>
<td>1.040</td>
<td>6.295.219</td>
<td>205</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7.917</td>
<td>41.436.746</td>
<td>14.292</td>
</tr>
</tbody>
</table>
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

TABLA 4. Nº de Expedientes / indemnizaciones de daños en las personas, a nivel nacional, para la serie temporal 1987-2014 por Inundación / Embate de Mar.

<table>
<thead>
<tr>
<th>Año</th>
<th>Nº de Expedientes</th>
<th>Indemnizaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1987</td>
<td>9</td>
<td>148.105</td>
</tr>
<tr>
<td>1988</td>
<td>16</td>
<td>329.423</td>
</tr>
<tr>
<td>1989</td>
<td>4</td>
<td>147.993</td>
</tr>
<tr>
<td>1990</td>
<td>4</td>
<td>34.409</td>
</tr>
<tr>
<td>1991</td>
<td>2</td>
<td>17.106</td>
</tr>
<tr>
<td>1992</td>
<td>2</td>
<td>53.825</td>
</tr>
<tr>
<td>1993</td>
<td>1</td>
<td>4.130</td>
</tr>
<tr>
<td>1994</td>
<td>2</td>
<td>49.492</td>
</tr>
<tr>
<td>1995</td>
<td>2</td>
<td>165.381</td>
</tr>
<tr>
<td>1996</td>
<td>51</td>
<td>2.002.003</td>
</tr>
<tr>
<td>1997</td>
<td>21</td>
<td>418.928</td>
</tr>
<tr>
<td>1998</td>
<td>1</td>
<td>8.891</td>
</tr>
<tr>
<td>1999</td>
<td>3</td>
<td>316.916</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
<td>708.723</td>
</tr>
<tr>
<td>2001</td>
<td>2</td>
<td>40.450</td>
</tr>
<tr>
<td>2002</td>
<td>2</td>
<td>101.629</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>45.490</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>29.948</td>
</tr>
<tr>
<td>2005</td>
<td>2</td>
<td>21.111</td>
</tr>
<tr>
<td>2006</td>
<td>3</td>
<td>48.409</td>
</tr>
<tr>
<td>2007</td>
<td>4</td>
<td>103.185</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>3.259</td>
</tr>
<tr>
<td>2009</td>
<td>6</td>
<td>142.017</td>
</tr>
<tr>
<td>2010</td>
<td>5</td>
<td>152.202</td>
</tr>
<tr>
<td>2011</td>
<td>5</td>
<td>69.063</td>
</tr>
<tr>
<td>2012</td>
<td>13</td>
<td>304.985</td>
</tr>
<tr>
<td>2013</td>
<td>6</td>
<td>261.139</td>
</tr>
<tr>
<td>2014</td>
<td>1</td>
<td>7.245</td>
</tr>
<tr>
<td>TOTAL</td>
<td>174</td>
<td>5.735.457</td>
</tr>
</tbody>
</table>

TABLA 5. Nº de Expedientes, a nivel nacional, en función al tipo de lesión para la serie temporal 1987-2014 por Inundación / Embate de Mar.

<table>
<thead>
<tr>
<th>TIPO DE LESIÓN</th>
<th>Serie 87-08</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muerte</td>
<td>187</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>12</td>
<td>9</td>
<td>-</td>
<td>219</td>
</tr>
<tr>
<td>Incapacidad</td>
<td>16</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>34</td>
</tr>
<tr>
<td>TOTAL</td>
<td>203</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>17</td>
<td>12</td>
<td>1</td>
<td>253</td>
</tr>
</tbody>
</table>

38
Análisis de los Temporales Marinos entre 2013-2014 y sus Impactos en las Costas de Cantabria

TABLA 6.- Inversiones realizadas por temporales de 2013.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Actuación</th>
<th>Presupuesto (EUROS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marzo</td>
<td>Alimentación de arena playa de La Magdalena</td>
<td>38.335,90</td>
</tr>
<tr>
<td>Julio</td>
<td>Reparaciones en pasarela madera playa de Galizano, Ejecución escaleras acceso playa de San Julian, en Liendo</td>
<td>973,41, 5.172,94</td>
</tr>
<tr>
<td>Noviembre</td>
<td>Reparación provisional acceso playa de Oyambre por pajaro amarillo</td>
<td>3.983,20</td>
</tr>
<tr>
<td></td>
<td>Relleno de socavon en Luchana</td>
<td>33.451,10</td>
</tr>
<tr>
<td></td>
<td>Reposición de escollera en la playa del Tostadero</td>
<td>5.977,50</td>
</tr>
<tr>
<td></td>
<td>Alimentación de arena playa de La Magdalena</td>
<td>81.799,09</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>169.693,14</td>
</tr>
</tbody>
</table>

TABLA 7.- Inversiones por municipios realizadas por temporales de 2014.

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Ubicación</th>
<th>Actuación</th>
<th>Presupuesto (EUROS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arnuero</td>
<td>Isla</td>
<td>Reparación del paseo marítimo</td>
<td>18.666,57</td>
</tr>
<tr>
<td>Bareyo</td>
<td>Playa de Ajo</td>
<td>Demolición y retirada de restos y ejecución de acceso</td>
<td>40.866,75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instalación de baño</td>
<td>2.160,00</td>
</tr>
<tr>
<td>Castro-</td>
<td>Playa de Brazomar</td>
<td>Ejecución de botaolas</td>
<td>46.542,41</td>
</tr>
<tr>
<td>Urdiales</td>
<td>Playa de Cotolino</td>
<td>Reposición de escollera y balaustrada</td>
<td>17.436,25</td>
</tr>
<tr>
<td></td>
<td>Playa de Dicidó</td>
<td>Repilado piedras sobre el talud y reparación accesos</td>
<td>24.838,47</td>
</tr>
<tr>
<td></td>
<td>Playa La Atalaya</td>
<td>Reposición de solarium y acera</td>
<td>18.457,39</td>
</tr>
<tr>
<td></td>
<td>Playa de Ostende</td>
<td>Desmontado y retirada de barandilla y albardillas deterioradas y reposición</td>
<td>29.277,84</td>
</tr>
<tr>
<td></td>
<td>Playa de Brazomar</td>
<td>Reposición/reparación balaustrada, reposición enlosado y jardineras</td>
<td>39.640,44</td>
</tr>
<tr>
<td>Comillas</td>
<td>Playa de Comillas</td>
<td>Retirada restos acceso y ejecución del nuevo</td>
<td>67.023,41</td>
</tr>
<tr>
<td>Laredo</td>
<td>Playa Salvé</td>
<td>Bypass de arena para constituir una duna</td>
<td>20.073,90</td>
</tr>
<tr>
<td></td>
<td>Balastrada</td>
<td>Reposición de balastrada</td>
<td>41.617,69</td>
</tr>
<tr>
<td>Regeneración ambiental</td>
<td>Regeneración ambiental</td>
<td>122.561,22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reposición de la pasarela</td>
<td>Modificación trazado para su adaptación a la erosión del sistema dunar</td>
<td>3.190,23</td>
</tr>
<tr>
<td></td>
<td>El Puntal</td>
<td>Plantación de refuerzo en las dunas de Laredo</td>
<td>60.282,10</td>
</tr>
<tr>
<td></td>
<td>El Puntal</td>
<td>Retirada de pasarela y ejecución acceso en El Puntal</td>
<td>15.198,30</td>
</tr>
<tr>
<td></td>
<td>Reposición de arenas.</td>
<td>Reposición de arenas. Fase I y II</td>
<td>1.527.169,32</td>
</tr>
</tbody>
</table>
TABLA 7.- Inversiones por municipios realizadas por temporales de 2014 (Continuación).

<table>
<thead>
<tr>
<th>Localidad</th>
<th>Ubicación</th>
<th>Actuación</th>
<th>Presupuesto (EUROS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miengo</td>
<td>Playa de Cuchía</td>
<td>Retirada cierre dunar y reparación acceso</td>
<td>12.752,92</td>
</tr>
<tr>
<td>Piélagos</td>
<td>Playa de Somocuevas</td>
<td>Reparación escaleras de hormigón</td>
<td>11.118,73</td>
</tr>
<tr>
<td></td>
<td>Playa de Liencres</td>
<td>Reparación de accesos</td>
<td>16.789,55</td>
</tr>
<tr>
<td>Ribamontán al Mar</td>
<td>Paseo de Somo</td>
<td>Reparación de muretes de mampostería</td>
<td>26.656,61</td>
</tr>
<tr>
<td></td>
<td>Somo y Loredo</td>
<td>Plantación de refuerzo en las dunas de Somo</td>
<td>60.228,96</td>
</tr>
<tr>
<td></td>
<td>Playa de Galizano</td>
<td>Reparación pasarela, relleno de rampas</td>
<td>12.562,06</td>
</tr>
<tr>
<td></td>
<td>Loredo</td>
<td>Reposición pasarela de madera</td>
<td>93.549,46</td>
</tr>
<tr>
<td>Santander-Ribamontán al Mar</td>
<td>Playa Sardínero, Somo y Loredo</td>
<td>Reposición de arenas</td>
<td>674.817,60</td>
</tr>
<tr>
<td>Santander</td>
<td>Playa de Mataleñas</td>
<td>Reposición de balaustrada, reparación barandilla...</td>
<td>17.938,88</td>
</tr>
<tr>
<td></td>
<td>Sardínnero</td>
<td>Alimentación extra de arena en 2ª playa</td>
<td>60.475,80</td>
</tr>
<tr>
<td></td>
<td>Sardínnero</td>
<td>Refuerzo cimentación dos tramos de muro</td>
<td>119.053,91</td>
</tr>
<tr>
<td></td>
<td>Playas del Sardínero y el Camello</td>
<td>Reparaciones</td>
<td>81.913,71</td>
</tr>
<tr>
<td></td>
<td>Playa de la Concha</td>
<td>Reposición pasarela de madera con acceso</td>
<td>18.462,88</td>
</tr>
<tr>
<td></td>
<td>Segunda playa del Sardínerno</td>
<td>discapacitados</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Playa de la Magdalena</td>
<td>Alimentación de arenas</td>
<td>366.602,40</td>
</tr>
<tr>
<td></td>
<td>Paseo marítimo en el Sardínerno</td>
<td>Trabajos de reparación</td>
<td>43.287,39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Vicente de la Barquera</td>
<td>Playa de Oyambre</td>
<td>Reparación escollera, recalce servicios...</td>
<td>37.995,74</td>
</tr>
<tr>
<td></td>
<td>Playa de Merón y Bederna</td>
<td>Recolocación baños, acometidas y duchas</td>
<td>19.458,31</td>
</tr>
<tr>
<td></td>
<td>Playa de Merón</td>
<td>Reparación de pasarelas</td>
<td>6.002,48</td>
</tr>
<tr>
<td>Santillana del Mar</td>
<td>Playa de Santa Justa</td>
<td>Reparación de tarimas y pasarela</td>
<td>1.460,91</td>
</tr>
<tr>
<td>Santoña</td>
<td>Santoña</td>
<td>Reparación barandilla y albardilla</td>
<td>23.509,46</td>
</tr>
<tr>
<td></td>
<td>Playa de San Martín</td>
<td>Reposición de 20m con tarima de madera</td>
<td>16.088,16</td>
</tr>
<tr>
<td></td>
<td>Berria</td>
<td>Reparación rampas y escalera de madera de</td>
<td>21.451,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>acceso</td>
<td></td>
</tr>
<tr>
<td>Suances</td>
<td>Paseo Marítimo</td>
<td>Reposición enlosado</td>
<td>36.656,44</td>
</tr>
<tr>
<td></td>
<td>Playa de Tagle</td>
<td>Reposición acceso a la playa</td>
<td>8.315,36</td>
</tr>
<tr>
<td>Val de San Vicente</td>
<td>Playa de La Arena y Amio</td>
<td>Reposición escollera</td>
<td>3.670,27</td>
</tr>
<tr>
<td></td>
<td>Paseo Unquera</td>
<td>Reposición loseta en paseo</td>
<td>1.468,11</td>
</tr>
<tr>
<td>Valdáliga</td>
<td>Playa de Oyambre</td>
<td>Reparación barandilla, canalización duchas</td>
<td>2.523,84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TOTAL</td>
<td>3.895.775,74</td>
</tr>
</tbody>
</table>
FIGURAS

FIGURA 1.- Localización de los municipios afectados por los temporales de 2013 y 2014, en Cantabria.
FIGURA 2.- Relación de municipios afectados por los temporales de 2013/2014 y las inversiones realizadas, en Cantabria.