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ABSTRACT

Aims. Our goal is to estimate empirically the cosmic variance that affects merger fraction studies based on close pairs for the first
time.
Methods. We compute the merger fraction from photometric redshift close pairs with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc and
Δv ≤ 500 km s−1 and measure it in the 48 sub-fields of the ALHAMBRA survey. We study the distribution of the measured merger
fractions that follow a log-normal function and estimate the cosmic variance σv as the intrinsic dispersion of the observed distribu-
tion. We develop a maximum likelihood estimator to measure a reliable σv and avoid the dispersion due to the observational errors
(including the Poisson shot noise term).
Results. The cosmic variance σv of the merger fraction depends mainly on (i) the number density of the populations under study
for both the principal (n1) and the companion (n2) galaxy in the close pair and (ii) the probed cosmic volume Vc. We do not find a
significant dependence on either the search radius used to define close companions, the redshift, or the physical selection (luminosity
or stellar mass) of the samples.
Conclusions. We have estimated the cosmic variance that affects the measurement of the merger fraction by close pairs from ob-
servations. We provide a parametrisation of the cosmic variance with n1, n2, and Vc, σv ∝ n−0.54

1 V−0.48
c (n2/n1)−0.37. Thanks to this

prescription, future merger fraction studies based on close pairs could properly account for the cosmic variance on their results.

Key words. galaxies: interactions – galaxies: fundamental parameters – galaxies: statistics

1. Introduction

Our understanding of the formation and evolution of galaxies
across cosmic time has been greatly improved in the last decade
thanks to deep photometric and spectroscopic surveys. Some
examples of these successful deep surveys are SDSS (Sloan

� Based on observations collected at the German-Spanish
Astronomical Center, Calar Alto, jointly operated by the
Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and
the Instituto de Astrofísica de Andalucía (IAA-CSIC).
�� Appendix is available in electronic form at
http://www.aanda.org

Digital Sky Survey, Abazajian et al. 2009), GOODS (Great
Observatories Origins Deep Survey, Giavalisco et al. 2004),
AEGIS (All-Wavelength Extended Groth Strip International
Survey, Davis et al. 2007), ELAIS (European Large-Area ISO
Survey, Rowan-Robinson et al. 2004), COSMOS (Cosmological
Evolution Survey, Scoville et al. 2007), MGC (Millennium
Galaxy Catalogue, Liske et al. 2003), VVDS (VIMOS VLT
Deep Survey, Le Fèvre et al. 2005, 2013), DEEP (Deep
Extragalactic Evolutionary Probe, Newman et al. 2013), zCOS-
MOS (Lilly et al. 2009), GNS (GOODS NICMOS Survey,
Conselice et al. 2011), SXDS (Subaru/XMM-Newton Deep
Survey, Furusawa et al. 2008), or CANDELS (Cosmic Assembly
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NIR Deep Extragalactic Legacy Survey, Grogin et al. 2011;
Koekemoer et al. 2011).

One fundamental uncertainty in any observational measure-
ment derived from galaxy surveys is the cosmic variance (σv),
arising from the underlying large-scale density fluctuations and
leading to variances larger than those expected from simple
Poisson statistics. The most efficient way to tackle the cosmic
variance is to split the survey in several independent areas in
the sky. This minimises the sampling problem and is better than
increasing the volume in a wide contiguous field (e.g., Driver
& Robotham 2010). However, observational constraints (depth
vs. area) lead to many existing surveys that have observational
uncertainties dominated by the cosmic variance. Thus, a proper
estimation of σv is needed to fully describe the error budget in
deep cosmological surveys.

The impact of the cosmic variance in a given survey and red-
shift range can be estimated using two basic methods: theoret-
ically, by analysing cosmological simulations (e.g., Somerville
et al. 2004; Trenti & Stiavelli 2008; Stringer et al. 2009; Moster
et al. 2011), or empirically, by sampling a larger survey (e.g.,
Driver & Robotham 2010). Unfortunately, previous studies only
estimate the cosmic variance affecting number density measure-
ments and do not tackle the impact of σv in other important
quantities as the merger fraction. Merger fraction studies based
on close pair statistics measure the correlation of two galaxy
populations at small scales (≤100 h−1 kpc), so the amplitude
of the cosmic variance and its dependence on galaxy proper-
ties, probed volume, etc. should be different than those in num-
ber density studies. In the present paper, we take advantage
of the unique design, depth, and photometric redshift accuracy
of the ALHAMBRA1 (Advanced, Large, Homogeneous Area,
Medium-Band Redshift Astronomical) survey (Moles et al.
2008) to estimate empirically, for the first time, the cosmic vari-
ance that affects close pair studies. The ALHAMBRA survey
has observed eight separate regions of the northern sky, com-
prising 48 sub-fields of ∼180 arcmin2 each that can be assumed
as independent for our purposes. Thus, ALHAMBRA provides
48 measurements of the merger fraction across the sky. The in-
trinsic dispersion in the distribution of these merger fractions,
which we characterise in the present paper, is an observational
estimation of the cosmic variance σv.

The paper is organised as follows. In Sect. 2, we present
the ALHAMBRA survey and its photometric redshifts, and in
Sect. 3, we review the methodology to measure close pair merger
fractions when photometric redshifts are used. We present our
estimation and characterisation of the cosmic variance for close
pair studies in Sect. 4. In Sect. 5, we summarise our work
and present our conclusions. Throughout this paper, we use
a standard cosmology with Ωm = 0.3, ΩΛ = 0.7, H0 =
100 h km s−1 Mpc−1, and h = 0.7. Magnitudes are given in the
AB system.

2. The ALHAMBRA survey

The ALHAMBRA survey provides a photometric data set
over 20 contiguous, equal-width (∼300 Å), non-overlapping,
medium-band optical filters (3500 Å−9700 Å) plus 3 standard
broad-band near-infrared (NIR) filters (J, H, and Ks) over 8 dif-
ferent regions of the northern sky (Moles et al. 2008). The
survey has the aim of understanding the evolution of galax-
ies throughout cosmic time by sampling a large enough cos-
mological fraction of the universe, for which reliable spectral

1 http://alhambrasurvey.com
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Fig. 1. Schematic view of the ALHAMBRA field’s geometry in the
sky plane. We show the eight sub-fields (one per LAICA chip) of the
field ALHAMBRA-6. The black and red squares mark the two LAICA
pointings in this particular field. The geometry of the other seven fields
is similar. A colour version of this plot is available in the electronic
edition.

energy distributions (SEDs) and precise photometric redshifts
(zp) are needed. The simulations of Benítez et al. (2009), which
relates the image depth and the accuracy of the photometric red-
shifts to the number of filters, have demonstrated that the fil-
ter set chosen for ALHAMBRA can achieve a photometric red-
shift precision that is three times better than a classical 4−5
optical broad-band filter set. The final survey parameters and
scientific goals, as well as the technical properties of the filter
set, were described by Moles et al. (2008). The survey has col-
lected its data for the 20+3 optical-NIR filters in the 3.5 m tele-
scope at the Calar Alto observatory, using the wide-field camera
LAICA (Large Area Imager for Calar Alto) in the optical and the
OMEGA2000 camera in the NIR. The full characterisation, de-
scription, and performance of the ALHAMBRA optical photo-
metric system were presented in Aparicio-Villegas et al. (2010).
A summary of the optical reduction can be found in Cristóbal-
Hornillos et al. (in prep.), while that of the NIR reduction is in
Cristóbal-Hornillos et al. (2009).

The ALHAMBRA survey has observed eight well-separated
regions of the northern sky. The wide-field camera LAICA has
four chips with a 15′×15′ field-of-view each (0.22 arcsec/pixel).
The separation between chips is also 15′. Thus, each LAICA
pointing provides four separated areas in the sky (black or red
squares in Fig. 1). Six ALHAMBRA regions comprise two
LAICA pointings. In these cases, the pointings define two sepa-
rate strips in the sky (Fig. 1). In our study, we assumed the four
chips in each strip as independent sub-fields. The photometric
calibration of the field ALHAMBRA-1 is currently on-ongoing,
and the fields, ALHAMBRA-4 and ALHAMBRA-5, comprise
of one pointing each (see Molino et al. 2013, for details). We
summarise the properties of the seven ALHAMBRA fields used
in the present paper in Table 1. At the end, ALHAMBRA com-
prises 48 sub-fields of ∼180 arcmin2, which we assumed to be
independent, in which we measured the merger fraction follow-
ing the methodology described in Sect. 3. When we searched
for close companions near the sub-field boundaries, we did not
consider the observed sources in the adjacent fields to keep the
measurements independent. We prove the independence of the
48 ALHAMBRA sub-fields in Sect 4.6.

2.1. Bayesian photometric redshifts in ALHAMBRA

We rely on the ALHAMBRA photometric redshifts to compute
the merger fraction (Sect. 3). The photometric redshifts used all
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Table 1. ALHAMBRA survey fields.

Field Overlapping RA DEC sub-fields / area
name survey (J2000) (J2000) (# / deg2)

ALHAMBRA-2 DEEP2 01 30 16.0 +04 15 40 8 / 0.377
ALHAMBRA-3 SDSS 09 16 20.0 +46 02 20 8 / 0.404
ALHAMBRA-4 COSMOS 10 00 00.0 +02 05 11 4 / 0.203
ALHAMBRA-5 GOODS-N 12 35 00.0 +61 57 00 4 / 0.216
ALHAMBRA-6 AEGIS 14 16 38.0 +52 24 50 8 / 0.400
ALHAMBRA-7 ELAIS-N1 16 12 10.0 +54 30 15 8 / 0.406
ALHAMBRA-8 SDSS 23 45 50.0 +15 35 05 8 / 0.375
Total 48 / 2.381

over the present paper are fully presented and tested in Molino
et al. (2013), and we summarise their principal characteristics
below.

The photometric redshifts of ALHAMBRA were estimated
with BPZ2.0, a new version of BPZ (Benítez 2000). The BPZ is a
SED-fitting method based in a Bayesian inference, where a max-
imum likelihood is weighted by a prior probability. The library
of 11 SEDs (4 ellipticals, 1 lenticular, 2 spirals, and 4 starbursts)
and the prior probabilities used by BPZ2.0 in ALHAMBRA
are detailed in Benítez (in prep.). The ALHAMBRA photom-
etry used to compute the photometric redshifts is PSF-matched
aperture-corrected and based on isophotal magnitudes. In addi-
tion, a recalibration of the zero point of the images was per-
formed to enhance the accuracy of the photometric redshifts.
Sources were detected in a synthetic F814W filter image, as
noted i in the following, defined to resemble the HST/F814W
filter. The areas of the images affected by bright stars, as well
as those with lower exposure times (e.g., the edges of the im-
ages), were masked following Arnalte-Mur et al. (2013). The
total area covered by the ALHAMBRA survey after masking is
2.38 deg2. Finally, a statistical star/galaxy separation is encoded
in the variable Stellar_Flag of the ALHAMBRA catalogues,
and throughout this paper, we keep those ALHAMBRA sources
with Stellar_Flag ≤ 0.5 as galaxies.

The photometric redshift accuracy, as estimated by com-
parison with spectroscopic redshifts (zs), is δz = 0.0108 at
i ≤ 22.5 with a fraction of catastrophic outliers of η = 2.1%.
The variable δz is the normalized median absolute deviation of
the photometric versus spectroscopic redshift distribution (Ilbert
et al. 2006; Brammer et al. 2008),

δz = 1.48 ×median

( |zp − zs|
1 + zs

)
· (1)

The variable η is defined as the fraction of galaxies with
|zp − zs|/(1 + zs) > 0.2. We illustrate the high quality of
the ALHAMBRA photometric redshifts in Fig. 2. We refer to
Molino et al. (2013) for a more detailed discussion.

The odds quality parameter, as noted O, is a proxy for the
photometric redshift accuracy of the sources and is also pro-
vided by BPZ2.0. The odds is defined as the redshift proba-
bility enclosed on a ±K(1 + z) region around the main peak in
the probability distribution function (PDF) of the source, where
the constant K is specific for each photometric survey. Molino
et al. (2013) find that K = 0.0125 is the optimal value for the
ALHAMBRA survey. The parameter O ∈ [0, 1] is related with
the confidence of the zp, making it possible to derive high qual-
ity samples with better accuracy and lower rate of catastrophic
outliers. For example, a O ≥ 0.5 selection for i ≤ 22.5 galaxies
yields δz = 0.0094 and η = 1%, while δz = 0.0061 and η = 0.8%
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Fig. 2. Photometric redshift (zp) versus spectroscopic redshift (zs) for
the 3813 galaxies in the ALHAMBRA area with i ≤ 22.5 and a mea-
sured zs. The solid line marks identity. The sources above and below the
dashed lines are catastrophic outliers. The accuracy of the photometric
redshifts (δz) and the fraction of catastrophic outliers (η) are labelled
in the panel. A colour version of this plot is available in the electronic
edition.

for O ≥ 0.9 (see Molino et al. 2013, for further details). We ex-
plore the optimal odds selection in ALHAMBRA for close pair
studies in Sect. 4.3.

Reliable photometric redshift errors (σzp ) are needed to com-
pute the merger fraction in photometric samples (Sect. 3). In ad-
dition to the zp, we have the z+σ and the z−σ of each source, which
are defined as the redshifts that enclose 68% of the PDF of the
source. We estimated the photometric redshift error of each indi-
vidual source as σzp = C× (z+σ− z−σ). The constant C is estimated
from the distribution of the variable

Δz =
zp − zs

σzp

=
zp − zs

C × (z+σ − z−σ)
· (2)

The variable Δz should be normally distributed with a zero mean
and unit variance if the values of σzp from ALHAMBRA are
a good descriptor for the accuracy of the photometric redshifts
(e.g., Ilbert et al. 2009; Carrasco Kind & Brunner 2013). We find
that Δz is described well by a normal function when C = 0.49
(Fig. 3, see also Molino et al. 2013). With the definition of z+σ
and z−σ, note that C = 0.5 was expected. This result also implies
that the Gaussian approximation of the PDF assumed in the esti-
mation of the merger fraction (Sect. 3) is statistically valid, even
if the actual PDF of the individual sources could be multimodal
and/or asymmetric at faint magnitudes. We estimated C for dif-
ferent i-band magnitudes and odds selections, finding that the
C values are consistent with the global one within ±0.1. Thus,
we conclude that σzp provides a reliable photometric redshift er-
ror for every ALHAMBRA source.
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Fig. 3. Distribution of the variable Δz for the 3813 galaxies in the
ALHAMBRA area with i ≤ 22.5 and a measured spectroscopic red-
shift. The red line is the best least-squares fit of a Gaussian function to
the data. The median, dispersion, and the factor C derived from the fit
are labelled in the panel. A colour version of this plot is available in the
electronic edition.

2.2. Sample selection

Throughout this paper, we focus our analysis on the galaxies
in the ALHAMBRA first data release2. This catalogue com-
prises ∼500k sources and is complete (5σ, 3′′ aperture) for
i ≤ 24.5 galaxies (Molino et al. 2013). We explored differ-
ent apparent luminosity sub-samples from i ≤ 23 to i ≤ 20.
This ensures excellent photometric redshifts and provides reli-
able merger fraction measurements (Sect. 4.3) because the PDFs
of i ≤ 23 sources are defined well by a single Gaussian peak
(Molino et al. 2013). In Sect. 4.7, we also study the cosmic
variance in luminosity- and stellar mass-selected samples. The
B-band luminosities and the stellar masses of the ALHAMBRA
sources were also provided by BPZ2.0 and are included in the
ALHAMBRA catalogue (see Molino et al. 2013, for further de-
tails). The mass-to-light ratios from Taylor et al. (2011) and a
Chabrier (2003) initial mass function were assumed in the esti-
mation of the stellar masses.

3. Measuring of the merger fraction in photometric
samples

The linear distance between two sources can be obtained from
their projected separation, rp = φ dA(z1), and their rest-frame rel-
ative velocity along the line of sight, Δv = c |z2 − z1|/(1 + z1),
where z1 and z2 are the redshift of the principal (more lumi-
nous or massive galaxy in the pair) and the companion galaxy,
respectively; φ is the angular separation in arcsec of the two
galaxies on the sky plane; and dA(z) is the angular diameter dis-
tance in kpc arcsec−1 at redshift z. Two galaxies are defined as
a close pair if rmin

p ≤ rp ≤ rmax
p and Δv ≤ Δvmax. The PSF of

the ALHAMBRA ground-based images is �1.4′′ (median see-
ing of ∼1′′), which corresponds to 7.6 h−1 kpc in our cosmology
at z = 0.9. To ensure well de-blended sources and to minimise
colour contamination, we fixed rmin

p to 10 h−1 kpc (φ > 1.8′′

at z < 0.9). We left rmax
p ≤ 50 h−1 kpc as a free parame-

ter and estimate its optimal value in Sect. 4.3. Finally, we set
Δvmax = 500 km s−1 by following spectroscopic studies (e.g.,
Patton et al. 2000; Lin et al. 2008). With the previous constraints,
50%−70% of the selected close pairs finally merge (Patton &
Atfield 2008; Bell et al. 2006; Jian et al. 2012).

2 http://cloud.iaa.es/alhambra/

To compute close pairs, we defined a principal and a com-
panion sample. The principal sample comprises the more lumi-
nous or massive galaxy of the pair, and we looked for those
galaxies in the companion sample that fulfil the close pair cri-
terion for each galaxy of the principal sample. If one principal
galaxy has more than one close companion, we took each possi-
ble pair separately (i.e., if the companion galaxies B and C are
close to the principal galaxy A, we study the pairs A–B and A–C
as independent). In addition, through this paper, we do not im-
pose any luminosity or mass difference between the galaxies in
the close pair unless noted otherwise.

With the previous definitions, the merger fraction is

fm =
Np

N1
, (3)

where N1 is the number of sources in the principal sample and
Np the number of close pairs. This definition applies to spec-
troscopic volume-limited samples, but we rely on photometric
redshifts to compute fm in ALHAMBRA. In previous work,
López-Sanjuan et al. (2010a) develop a statistical method to
obtain reliable merger fractions from photometric redshift cat-
alogues like those from the ALHAMBRA survey. This method-
ology has been tested with the MGC (López-Sanjuan et al.
2010a) and the VVDS (López-Sanjuan et al. 2012) spectroscopic
surveys, and has been successfully applied in the GOODS-
South (López-Sanjuan et al. 2010a) and the COSMOS fields
(López-Sanjuan et al. 2012). We recall the main points of this
methodology below, and we explore how to apply it optimally
over the ALHAMBRA data in Sect. 4.3.

We used the following procedure to define a close pair sys-
tem in our photometric catalogue (see López-Sanjuan et al.
2010a, for details): first, we search for close spatial compan-
ions of a principal galaxy with redshift z1 and uncertainty σz1 ,
assuming that the galaxy is located at z1 − 2σz1 . This defines the
maximum φ possible for a given rmax

p in the first instance. If we
find a companion galaxy with redshift z2 and uncertainty σz2 at
rp ≤ rmax

p , we study both galaxies in redshift space. For con-
venience, we assume below that every principal galaxy has, at
most, one close companion. In this case, our two galaxies could
be a close pair in the redshift range

[z−, z+] = [z1 − 2σz1 , z1 + 2σz1] ∩ [z2 − 2σz2 , z2 + 2σz2 ]. (4)

Because of the variation in the range [z−, z+] of the function
dA(z), a sky pair at z1 − 2σz1 might not be a pair at z1 + 2σz1 .
We thus impose the condition rmin

p ≤ rp ≤ rmax
p at all z ∈ [z−, z+]

and redefine this redshift interval if the sky pair condition is not
satisfied at every redshift. After this, our two galaxies define the
close pair system k in the redshift interval [z−k , z

+
k ], where the

index k covers all the close pair systems in the sample.
The next step is to define the number of pairs associated to

each close pair system k. For this, and because all our sources
have a photometric redshift, we suppose in the following that a
galaxy i in whatever sample is described in redshift space by a
Gaussian probability distribution,

Pi (zi | zp,i, σzp,i) =
1√

2πσzp,i

exp

⎡⎢⎢⎢⎢⎢⎣− (zi − zp,i)2

2σ2
zp,i

⎤⎥⎥⎥⎥⎥⎦ · (5)

With the previous distribution, we are able to statistically treat all
the available information in redshift space and define the number
of pairs at redshift z1 in system k as

νk (z1) = Ck P1(z1 | zp,1, σzp,1 )
∫ z+m

z−m
P2(z2 | zp,2, σzp,2 ) dz2, (6)
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where z1 ∈ [z−k , z
+
k ], the integration limits are

z−m = z1(1 − Δvmax/c) − Δvmax/c, (7)

z+m = z1(1 + Δvmax/c) + Δvmax/c, (8)

the subindex 1 [2] refers to the principal [companion] galaxy in
the system k, and the constant Ck normalises the function to the
total number of pairs in the interest range,

2Nk
p =

∫ z+k

z−k

P1(z1 | zp,1, σzp,1) dz1 +

∫ z+k

z−k

P2(z2 | zp,2, σzp,2 ) dz2. (9)

Note that νk = 0 if z1 < z−k or z1 > z+k . The function νk tells
us how the number of pairs in the system k, as noted by Nk

p ,
are distributed in redshift space. The integral in Eq. (6) spans
those redshifts in which the companion galaxy has Δv ≤ Δvmax

for a given redshift of the principal galaxy. This translates to
z+m − z−m ∼ 0.005 in our redshift range of interest.

With the previous definitions, the merger fraction in the in-
terval zr = [zmin, zmax) is

fm =

∑
k

∫ zmax

zmin
νk (z1) dz1∑

i

∫ zmax

zmin
Pi (zi | zp,i, σzp,i ) dzi

· (10)

If we integrate over the whole redshift space, zr = [0,∞),
Eq. (10) becomes

fm =

∑
k Nk

p

N1
, (11)

where
∑

k Nk
p is analogous to Np in Eq. (3). To estimate the obser-

vational error of fm, as noted by σ f , we used the jackknife tech-
nique (Efron 1982). We computed partial standard deviations,
δk, for each system k by taking the difference between the mea-
sured fm and the same quantity with the kth pair removed for the
sample, f k

m, such that δk = fm − f k
m. For a redshift range with Np

systems, the variance is given by σ2
f = [(Np − 1)

∑
k δ

2
k]/Np.

3.1. Border effects in redshift and in the sky plane

When we search for a primary source’s companion, we define a
volume in the sky plane-redshift space. If the primary source is
near the boundaries of the survey, a fraction of the search volume
lies outside of the effective volume of the survey. López-Sanjuan
et al. (2010a) find that border effects in the sky plane are repre-
sentative (i.e., 1σ discrepancy) only at rmax

p � 70 h−1 kpc. Thus,
we restricted the search radius in our study to rmax

p ≤ 50 h−1 kpc.
We avoid the incompleteness in redshift space by including

the sources in the samples inside the redshift range [zmin, zmax)
under study and those sources with either zp,i + 2σzp,i ≥ zmin or
zp,i − 2σzp,i < zmax.

3.2. The merger rate

The final goal of merger studies is the estimation of the merger
rate Rm, defined as the number of mergers per galaxy and Gyr−1.
The merger rate is computed from the merger fraction by close
pairs as

Rm =
Cm

Tm
fm, (12)

where Cm is the fraction of the observed close pairs that finally
merge after a merger time scale Tm. The merger time scale and

the merger probability Cm should be estimated from simulations
(e.g., Kitzbichler & White 2008; Lotz et al. 2010a,b; Lin et al.
2010; Jian et al. 2012; Moreno et al. 2013). On the one hand,
Tm depends mainly on the search radius rmax

p , the stellar mass
of the principal galaxy, and the mass ratio between the galax-
ies in the pair with a mild dependence on redshift and environ-
ment (Jian et al. 2012). On the other hand, Cm depends mainly
on rmax

p and environment with a mild dependence on both red-
shift and the mass ratio between the galaxies in the pair (Jian
et al. 2012). Despite the efforts in the literature to estimate both
Tm and Cm, different cosmological and galaxy formation mod-
els provide different values within a factor of two-three (e.g.,
Hopkins et al. 2010). To avoid model-dependent results in the
present paper, we focus in the cosmic variance of the observa-
tional merger fraction fm.

4. Estimation of the cosmic variance for merger
fraction studies

4.1. Theoretical background

In this section, we recall the theoretical background and define
the basic variables involved in the cosmic variance definition and
characterisation. The relative cosmic variance (σv) arises from
the underlying large-scale density fluctuations and leads to vari-
ances larger than those expected from simple Poisson statistics.
Following Somerville et al. (2004) and Moster et al. (2011), the
mean 〈N〉 and the variance 〈N2〉 − 〈N〉2 in the distribution of
galaxies are given by the first and second moments of the prob-
ability distribution PN(Vc), which describes the probability of
counting N objects within a volume Vc. The relative cosmic vari-
ance is defined as

σ2
v =
〈N2〉 − 〈N〉2
〈N〉2 − 1

〈N〉 · (13)

The second term represents the correction for the Poisson shot
noise. The second moment of the object counts is

〈N2〉 = 〈N〉2 + 〈N〉 + 〈N〉
2

V2
c

∫
Vc

ξ(|ra − rb|) dVc,a dVc,b, (14)

where ξ is the two-point correlation function of the sample under
study (Peebles 1980). Combining this with Eq. (13), the relative
cosmic variance can be written as

σ2
v =

1

V2
c

∫
Vc

ξ(|ra − rb|) dVc,a dVc,b. (15)

Thus, the cosmic variance of a given sample depends on the
correlation function of that population. We can approximate the
galaxy correlation function in Eq. (15) by the linear theory cor-
relation function for dark matter ξdm, ξ = b2 ξdm, where b is the
galaxy bias. The bias at a fixed scale depends mainly on both
redshift and the selection of the sample under study. With this
definition of the correlation function, we find that

σv ∝ b

V1−α
c
, (16)

where the power law index α takes into account the extra volume
dependence from the integral of the correlation function ξdm in
Eq. (15).

The bias of a particular population is usually measured from
the analysis of the correlation function and is well established
in that the bias increases with luminosity and stellar mass (see
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Zehavi et al. 2011; Coupon et al. 2012; Marulli et al. 2013;
Arnalte-Mur et al. 2013, and references therein). The estimation
of the bias is a laborious task, so we decided to use the redshift
and the number density n of the population under study instead
of the bias to characterise the cosmic variance. The number den-
sity is an observational quantity that decreases with the increase
of the luminosity and the mass selection, so a b ∝ n−β relation is
expected. This inverse dependence is indeed suggested by Nuza
et al. (2013) results.

In summary, we expect

σv ∝ b

V1−α
c
∝ zγ

nβ V1−α
c
· (17)

This equation shows that the number density of galaxies, the red-
shift, and the cosmic volume can be assumed as independent
variables in the cosmic variance parametrisation. Equation (17)
and the deduction above apply to the cosmic variance in the
number of galaxies. We are interested on the cosmic variance
of the merger fraction by close pairs, instead, so a dependence
on Vc, redshift, and the number density of the two populations
under study, as noted by n1 for principal galaxies and by n2 for
the companion galaxies, is expected. We therefore used these
four variables (n1, n2, z, and Vc) to characterise the cosmic vari-
ance in close pair studies (Sect. 4.4).

The power-law indices in Eq. (17) could be different for
luminosity- and mass-selected samples, as well as for flux-
limited samples. In the present paper, we use flux-limited sam-
ples selected in the i band to characterise the cosmic variance.
This choice has several benefits, since we have a well-controlled
selection function, a better understanding of the photometric red-
shifts and their errors, and we have access to larger samples at
lower redshift that in the luminosity and the stellar mass cases.
That improves the statistics and increases the useful redshift
range. At the end, future studies will be interested on the cosmic
variance in physically selected samples (i.e., luminosity or stellar
mass). Thus, we compare the results from the flux-limited i-band
samples with the actual cosmic variance measured in physically
selected samples in Sect. 4.7.

Finally, we set the definition of the number density n. In the
present paper, the number density of a given population is the
cosmic average number density of that population. For example,
if we are studying the merger fraction in a volume dominated
by a cluster, we should not use the number density in that vol-
ume, but the number density derived from a general luminosity
or mass function work instead. Thanks to the 48 sub-fields in
ALHAMBRA we have direct access to the average number den-
sities of the populations under study (Sect. 4.4.1).

4.2. Distribution of the merger fraction and σv estimation

In this section, we explore which statistical distribution repro-
duces the observed merger fractions better and how to reliably
measure the cosmic variance σv. As representative examples,
we show the distributions of the merger fraction fm in the 48
ALHAMBRA sub-fields for i ≤ 22 and i ≤ 21 galaxies in
Fig. 4. The merger fraction was measured from close pairs with
10 h−1 kpc ≤ rp ≤ 30 h−1 kpc. Unless noted otherwise, the prin-
cipal and the companion samples in the following comprise the
same galaxies. We find that the observed distributions are not
Gaussian but follow a log-normal distribution instead,

PLN ( fm | μ, σ) =
1√

2πσ fm
exp

[
− (ln fm − μ)2

2σ2

]
, (18)

0.02 0.04 0.06 0.08 0.10
fm

0
2
4
6
8

10
12
14
16

N

i ≤ 22
0.3 ≤ z < 0.9

σ = 0.33
σv = 0.25

0.02 0.04 0.06 0.08 0.10
fm

0
2
4
6
8

10
12
14
16

N

i ≤ 21
0.3 ≤ z < 0.9

σ = 0.62
σv = 0.44

Fig. 4. Distribution of the merger fraction fm for i ≤ 22 (top panel)
and i ≤ 21 (bottom panel) galaxies in the 48 ALHAMBRA sub-fields,
as measured from close pairs with 10 h−1 kpc ≤ rp ≤ 30 h−1 kpc at
0.3 ≤ z < 0.9. In each panel, the red solid line is the best least-squares
fit of a log-normal function to the data. The star and the red bar mark
the median and the 68% confidence interval of the fit, respectively. The
black bar marks the confidence interval from the maximum likelihood
analysis of the data and is our measurement of the cosmic variance σv.
A colour version of this plot is available in the electronic edition.

where μ and σ are the median and the dispersion of a Gaussian
function in log-space f ′m = ln fm. This is,

PG ( f ′m | μ, σ) =
1√
2πσ

exp

[
− ( f ′m − μ)2

2σ2

]
· (19)

The 68% confidence interval of the log-normal distribution is
[eμe−σ, eμeσ]. This functional distribution was expected for two
reasons. First, the merger fraction cannot be negative, implying
an asymmetric distribution (Cameron 2011). Second, the distri-
bution of overdense structures in the universe is log-normal (e.g.,
Coles & Jones 1991; de la Torre et al. 2010; Kovač et al. 2010)
and the merger fraction increases with density (Lin et al. 2010;
de Ravel et al. 2011; Kampczyk et al. 2013). We checked that
the merger fraction follows a log-normal distribution in all the
samples explored in the present paper.

The variable σ encodes the relevant information about the
dispersion in the merger fraction distribution, including the dis-
persion due to the cosmic variance. The study of the median
value of the merger fraction in ALHAMBRA, as estimated as
eμ, and its dependence on z, stellar mass, or colour, is beyond
the scope of the present paper, and we will address this issue in
a future work.

A best least-squares fit with a log-normal function to the
distributions in Fig. 4 shows that σ increases with the appar-
ent brightness from σ = 0.33 for i ≤ 22 galaxies to σ = 0.62
for i ≤ 21 galaxies. However, the origin of the observed σ is
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twofold: (i) the intrinsic dispersion due to the cosmic varianceσv
(i.e., the field-to-field variation in the merger fraction because of
the clustering of the galaxies) and (ii) the dispersion due to the
observational errors σo (i.e., the uncertainty in the measurement
of the merger fraction in a given field, including the Poisson shot
noise term). Thus, the dispersion σ reported in Fig. 4 is an upper
limit for the actual cosmic variance σv. We deal with this lim-
itation by applying a maximum likelihood estimator (MLE) to
the observed distributions. In Appendix A, we develop a MLE
that estimates the more probable values of μ and σv, assum-
ing that the merger fraction follows a Gaussian distribution in
log-space (Eq. (19)) that is affected by known observational er-
rors σo. We prove that the MLE provides an unbiased estima-
tion of μ and σv and reliable uncertainties of these parameters.
Applying the MLE to the distributions in Fig. 4, we find that σv
is lower than σ, as anticipated, and that the cosmic variance in-
creases with the apparent brightness from σv = 0.25 ± 0.04 for
i ≤ 22 galaxies to σv = 0.44 ± 0.08 for i ≤ 21 galaxies.

We constrain the dependence of σv on the number den-
sity of the populations under study in Sects. 4.4.1 and 4.4.4
on the probed cosmic volume in Sect. 4.4.2 and on redshift in
Sect. 4.4.3. That provides a complete description of the cosmic
variance for merger fraction studies. We stress that our defini-
tion of σv differs from the classical definition of the relative cos-
mic variance presented in Sect. 4.1, which is equivalent to eσv .
However, σv encodes the relevant information needed to esti-
mate the intrinsic dispersion in the measurement of the merger
fraction due to the clustering of galaxies.

4.3. Optimal estimation of σv in the ALHAMBRA survey

In the previous section, we have defined the methodology to
compute the cosmic variance from the observed distribution of
the merger fraction. However, as shown by López-Sanjuan et al.
(2010a), we need a galaxy sample with either small photomet-
ric redshift errors or a large fraction of spectroscopic redshifts
to avoid projection effects. In the present study, we did not use
information from spectroscopic redshifts, so we should check
that the photometric redshifts in ALHAMBRA are good enough
for our purposes. A natural way to select excellent photometric
redshifts in ALHAMBRA is by a selection in the odds param-
eter. On the one hand, this selection increases the accuracy of
the photometric redshifts of the sample and minimises the frac-
tion of catastrophic outliers (Molino et al. 2013), improving the
merger fraction estimation. On the other hand, our sample be-
comes incomplete and could be biased toward a population of
either bright galaxies or galaxies with marked features in the
SED (i.e., emission line galaxies or old populations with a strong
4000 Å break). In this section, we study how the merger fraction
in ALHAMBRA depends on the O selection and derive the op-
timal one to estimate the cosmic variance.

Following the methodology from spectroscopic surveys
(e.g., Lin et al. 2004; de Ravel et al. 2009; López-Sanjuan et al.
2011, 2013), if we have a population with a total number of
galaxies Ntot in a given volume and we observe a random frac-
tion fobs of these galaxies, the merger fraction of the total popu-
lation is

fm = fm,obs × f −1
obs, (20)

where fm,obs is the merger fraction of the observed sample. In
ALHAMBRA, we applied a selection in the parameter O, so
Eq. (20) becomes

fm = fm (≥Osel) × Ntot

N (≥Osel)
, (21)

Table 2. Cosmic variance σv as a function of the search radius rmax
p for

O ≥ Osel = 0.3 galaxies at 0.3 ≤ z < 0.9.

rmax
p σv σv σv

(h−1 kpc) (i ≤ 22.5) (i ≤ 21.5) (i ≤ 21.0)

30 0.181 ± 0.030 0.235 ± 0.053 0.447 ± 0.091
35 0.184 ± 0.027 0.246 ± 0.045 0.433 ± 0.079
40 0.199 ± 0.026 0.284 ± 0.041 0.460 ± 0.073
45 0.195 ± 0.024 0.289 ± 0.040 0.447 ± 0.067
50 0.190 ± 0.023 0.284 ± 0.038 0.451 ± 0.066

Average 0.190 ± 0.011 0.272 ± 0.019 0.448 ± 0.033

0.0 0.2 0.4 0.6 0.8
Osel

0.02
0.04
0.06
0.08
0.10
0.12
0.14

f m

Fig. 5. Merger fraction fm as a function of the odds selectionOsel for i ≤
22.5 galaxies at 0.3 ≤ z < 0.9. The filled triangles, circles, and squares
are for rmax

p = 30, 40, and 50 h−1 kpc close pairs, respectively. The open
triangles are the observed merger fractions for rmax

p = 30 h−1 kpc to
illustrate the selection correction from Eq. (21). In several cases, the
error bars are smaller than the points. The dotted, dashed, and solid
lines mark the average fm at 0.3 ≤ Osel ≤ 0.6 for rmax

p = 30, 40, and
50 h−1 kpc close pairs, respectively. A colour version of this plot is
available in the electronic edition.

where N (≥Osel) is the number of galaxies with odds higher than
Osel (i.e., galaxies with O ≥ Osel), Ntot is the total number of
galaxies (i.e., galaxies with O ≥ 0), and fm (≥Osel) is the merger
faction of those galaxies with O ≥ Osel. Because fm must be in-
dependent of theO selection, the study of fm as a function ofOsel
provides the clues about the optimal odds selection for merger
fraction studies in ALHAMBRA. We show fm as a function of
Osel for galaxies with i ≤ 22.5 at 0.3 ≤ z < 0.9 in Fig. 5. We find
that

• the merger fraction is roughly constant for 0.2 ≤ Osel ≤ 0.6.
This is the expected result if the merger fraction is reliable
and measured in a non-biased sample. In this particular case,
the Osel = 0.2 (0.6) sample comprises 98% (66%) of the total
number of galaxies with i ≤ 22.5;
• the merger fraction is overestimated for Osel ≤ 0.1. Even if

only a small fraction of galaxies with poor constrains in the
photometric redshits are included in the sample, the projec-
tion effects become important;
• the merger fraction is overestimated for Osel ≥ 0.7. This be-

haviour at high odds (i.e., in samples with high quality pho-
tometric redshifts) suggests that the retained galaxies are a
biased sub-sample of the general population under study.

In the analysis above, we only accounted for close companions
of i ≤ 22.5 galaxies with 10 h−1 kpc ≤ rp ≤ 30 h−1 kpc, but
we can use other values of rmax

p or searching over different sam-
ples. On the one hand, we repeated the study for rmax

p = 40
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Fig. 6. Cosmic variance σv as a function of rmax
p for i ≤ 22.5, 21.5, and

21 galaxies at 0.3 ≤ z < 0.9 (circles, stars, and triangles, respectively).
The horizontal lines mark the error-weighted average of the cosmic
variance in each case, and the coloured areas mark their 68% confi-
dence intervals. A colour version of this plot is available in the elec-
tronic edition.

and 50 h−1 kpc, finding the same behaviour than for rmax
p =

30 h−1 kpc (Fig. 5). The only differences are that the merger
fraction increases with the search radius and that the Osel = 0.2
point starts to deviate from the expected value (the search area
increases with rmax

p and more accurate photometric redshifts are
needed to avoid projection effects). On the other hand, we ex-
plored a wide range of i-band magnitude selections from i ≤ 23
to 20 in the three previous rmax

p cases. We find again the same
behaviour. That reinforces our arguments above and suggests
0.3 ≤ Osel ≤ 0.6 as acceptable odds limits to select samples
for merger fraction studies in ALHAMBRA.

The merger fraction increases with the search radius (Fig. 5).
However, the merger rate Rm (Sect. 3.2) is a physical property of
any population, and it cannot depend on rmax

p . Thus, the increase
in the merger fraction with the search radius is compensated with
the increase in the merger time scale (e.g., de Ravel et al. 2009;
López-Sanjuan et al. 2011). This is, Rm ∝ fm(rmax

p )/Tm(rmax
p ).

For the same reason, the cosmic variance of the merger rate can-
not depend on rmax

p . In other words, the 68% confidence interval
of the merger rate, [Rme−σv ,Rmeσv ], should be independent of
the search radius. Expanding the previous confidence interval,
we find that

[Rme−σv ,Rmeσv ] ∝ (22)

[ fm(rmax
p ) T−1

m (rmax
p ) e−σv , fm(rmax

p ) T−1
m (rmax

p ) eσv ] =

[ fm(rmax
p ) e−σv , fm(rmax

p ) eσv] T−1
m (rmax

p ).

Note that the dependence on rmax
p is encoded in the median

merger fraction and in the merger time scale. Thus, the cos-
mic variance σv of the merger fraction should not depend on the
search radius. We checked this prediction by studying the cos-
mic variance as a function of the search radius for i ≤ 22.5, 21.5,
and 21 galaxies with O ≥ Osel = 0.3 at 0.3 ≤ z < 0.9. We find
that σv is consistent with a constant value irrespective of rmax

p
in the three populations probed, as desired (Table 2 and Fig. 6).
This supports σv as a good descriptor of the cosmic variance
and our methodology to measure it. In the previous analysis, we
have omitted the merger probability Cm, which mainly depends
on rmax

p and environment (Sect. 3.2). The merger fraction corre-
lates with environment, so the merger probability could modify
the factor eσv in Eq. (22). Because a constant σv with rmax

p is
observed, the impact of Cm in the fm to Rm translation should
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Fig. 7. Cosmic variance σv as a function of the odds selection Osel for
i ≤ 22.5 galaxies at 0.3 ≤ z < 0.9. Triangles, circles, and squares are
for rmax

p = 30, 40, and 50 h−1 kpc close pairs, respectively. The dotted,
dashed, and solid lines mark the average σv at 0.1 ≤ Osel ≤ 0.5 for
rmax

p = 30, 40, and 50 h−1 kpc close pairs, respectively. A colour version
of this plot is available in the electronic edition.

be similar in the range of rmax
p explored. Detailed cosmological

simulations are needed to clarify this issue.
Finally, we studied the dependence of σv on the odds se-

lection for i ≤ 22.5 galaxies at 0.3 ≤ z < 0.9. Following the
same arguments than before, the cosmic variance should not de-
pend on the odds selection. We find that (i) σv is consistent with
a constant value as a function of rmax

p for any Osel, reinforcing
our results above; and (ii) σv is independent of the odds selec-
tion at 0.1 ≤ Osel ≤ 0.5 (Fig.7). As for the merger fraction, we
checked that different populations follow the same behaviour.
We therefore set O ≥ Osel = 0.3 as the optimal odds selection
to measure the cosmic variance in ALHAMBRA. This selection
provides excellent photometric redshifts and ensures representa-
tive samples.

In summary, we estimate the cosmic variance σv from the
merger fractions measured in the 48 ALHAMBRA sub-fields
with 10 h−1 kpc ≤ rp ≤ 50 h−1 kpc close pairs (the σv un-
certainty is lower for larger search radii) and in samples with
O ≥ Osel = 0.3 in the following. That ensures reliable results in
representative (i.e., non-biased) samples.

4.4. Characterisation of σv

At this stage, we have set both the methodology to compute a
robust cosmic variance from the observed merger fraction dis-
tribution (Sect. 4.2) and the optimal search radius and odds se-
lection to estimate σv in ALHAMBRA (Sect. 4.3). Now, we can
characterise the cosmic variance as a function of the populations
under study (Sects. 4.4.1 and 4.4.4), the probed cosmic volume
(Sect. 4.4.2), and the redshift (Sect. 4.4.3).

4.4.1. Dependence on the number density of the principal
sample

In this section, we explore how the cosmic variance depends on
the number density n1 of the principal population under study.
For that, we took the same population as principal and compan-
ion sample. We study the dependence on the companion sam-
ple in Sect. 4.4.4. To avoid any dependence of σv on either the
probed cosmic volume and z and to minimise the observational
errors, we focus on the redshift range 0.3 ≤ z < 0.9 in this sec-
tion. This range probes a cosmic volume of Vc ∼ 1.4×105 Mpc3

in each ALHAMBRA sub-field. To explore different number
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Fig. 8. Cosmic variance σv as a function of the number density n1 of
the principal population under study. Increasing the number density,
the principal sample comprises i ≤ 20, 20.5, 21, 21.5, 22, 22.5, and
23 galaxies, respectively. The probed cosmic volume is the same in all
the cases, Vc ∼ 1.4 × 105 Mpc3 (0.3 ≤ z < 0.9). The dashed line is the
error-weighted least-squares fit of a power-law to the data, σv ∝ n−0.54

1 .
A colour version of this plot is available in the electronic edition.

Table 3. Cosmic variance σv as a function of the principal sample’s
number density n1.

Principal n1 σv
sample (10−3 Mpc−3)

i ≤ 23.0 6.88 ± 0.16 0.158 ± 0.019
i ≤ 22.5 4.79 ± 0.14 0.190 ± 0.023
i ≤ 22.0 3.30 ± 0.11 0.245 ± 0.030
i ≤ 21.5 2.12 ± 0.07 0.284 ± 0.038
i ≤ 21.0 1.28 ± 0.05 0.451 ± 0.066
i ≤ 20.5 0.73 ± 0.03 0.587 ± 0.100
i ≤ 20.0 0.35 ± 0.01 0.695 ± 0.154

densities, we measured the cosmic variance for different i-band
selected samples from i ≤ 20 to i ≤ 23 in 0.5 magnitude steps.
We estimated the average number density n1 in the redshift range
zr as the median number density in the 48 ALHAMBRA sub-
fields with

n j
1 (zr) =

∑
i

∫ zmax

zmin
P j

i (zi | zp,i, σzp,i ) dzi

V j
c (zr)

(23)

being the number density in the sub-field j and V j
c the cosmic

volume probed by it at zr. In the measurement of the number
density, all the galaxies were taking into account; i.e., any odds
selection was applied (O ≥ 0). We stress that our measured num-
ber densities are unaffected by cosmic variance, and they can be
used therefore to characterise σv. We report our measurements
in Table 3.

We find that the cosmic variance increases as the number
density decreases (Fig. 8), as expected by Eq. (17). The error-
weighted least-squares fit of a power-law to the data is

σv (n1) = (0.45 ± 0.04) ×
( n1

10−3 Mpc−3

)−0.54± 0.06

. (24)

In this section and in the following ones, we used i-band se-
lected samples to characterise σv. We show that the results ob-
tained with these i-band samples can be applied to luminosity-
and stellar mass-selected samples in Sect. 4.7.
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v = 1.05 × V −0.48
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Fig. 9. Normalised cosmic variance σ∗v as a function of the probed cos-
mic volume Vc for galaxies with i ≤ 23. The circle corresponds to same
data as in Fig. 8. The stars probe different redshift intervals, while trian-
gles probe sky areas smaller than the fiducial ALHAMBRA sub-field.
The dashed line is the error-weighted least-squares fit of a power-law
to the data, σ∗v ∝ V−0.48

c . A colour version of this plot is available in the
electronic edition.

4.4.2. Dependence on the cosmological volume

In this section, we explore the dependence of the cosmic vari-
ance on the cosmic volume probed by the survey. We defined
σ∗v as σ∗v = σv/σv (n1). This erased the dependence on the num-
ber density of the population and only volume effects were mea-
sured. We explored smaller cosmic volumes than in the previ-
ous section by studying (i) different redshift ranges over the full
ALHAMBRA area (avoiding redshift ranges smaller than 0.1)
and (ii) smaller areas, centred in the ALHAMBRA sub-fields
at 0.3 ≤ z < 0.9. All the cases, as summarised in Table 4,
are for i ≤ 23 galaxies. At the end, we explored volumes from
Vc ∼ 0.1 × 105 Mpc3 to Vc ∼ 1.4 × 105 Mpc3. The power-law
function that better describes the observations (Fig. 9) is

σ∗v (Vc) = (1.05 ± 0.05) ×
( Vc

105 Mpc3

)−0.48± 0.05

. (25)

We tested the robustness of our result by fitting the two sets of
data (variation in redshift and area) separately. We find σ∗v ∝
V−0.43± 0.08

c for the redshift data, while σ∗v ∝ V−0.48± 0.05
c for the

area data.

4.4.3. Dependence on redshift

The redshift is an expected parameter in the parametrisation the
cosmic variance. However, Fig. 9 shows that the results at dif-
ferent redshifts are consistent with those from the wide redshift
range 0.3 ≤ z < 0.9. As a consequence, the redshift dependence
of the cosmic variance should be smaller than the typical error in
our measurements. We tested this hypothesis by measuringσv in
different, non-overlapping redshift bins. We summarise our mea-
surements, as performed for i ≤ 23 galaxies, in Table 5. We de-
fined σ∗∗v = σv/σv (n1,Vc) to isolate the redshift dependence of
the cosmic variance. We find that σ∗∗v is compatible with unity,
σ∗∗v = 1.02±0.07, and that no redshift dependence remains after
accounting for the variation in n1 and Vc (Fig. 10). This con-
firms our initial hypothesis and we assume, therefore, γ = 0 in
the following.

A127, page 9 of 17

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322474&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322474&pdf_id=9


A&A 564, A127 (2014)

Table 4. Cosmic variance σv as a function of the probed cosmic volume Vc.

Redshift Effective area Vc n1 σv σ∗v
range (deg2) (104 Mpc3) (10−3 Mpc−3) σv/σv(n1)

[0.30, 0.69) 2.38 6.98 ± 0.06 9.21 ± 0.25 0.169 ± 0.025 1.24 ± 0.15
[0.69, 0.90) 2.38 6.87 ± 0.06 4.69 ± 0.16 0.273 ± 0.040 1.39 ± 0.18
[0.30, 0.60) 2.38 4.68 ± 0.04 10.32 ± 0.32 0.205 ± 0.030 1.60 ± 0.19
[0.60, 0.77) 2.38 4.68 ± 0.04 5.82 ± 0.18 0.274 ± 0.042 1.57 ± 0.19
[0.77, 0.90) 2.38 4.49 ± 0.04 4.17 ± 0.19 0.323 ± 0.051 1.54 ± 0.21
[0.30, 0.55) 2.38 3.60 ± 0.03 11.23 ± 0.38 0.230 ± 0.032 1.88 ± 0.22
[0.55, 0.70) 2.38 3.68 ± 0.03 6.14 ± 0.21 0.252 ± 0.041 1.48 ± 0.20
[0.70, 0.82) 2.38 3.74 ± 0.03 5.26 ± 0.21 0.311 ± 0.056 1.68 ± 0.23
[0.45, 0.60) 2.38 2.91 ± 0.02 7.64 ± 0.31 0.268 ± 0.043 1.78 ± 0.24
[0.30, 0.45) 2.38 1.76 ± 0.01 14.04 ± 0.50 0.276 ± 0.051 2.55 ± 0.30

[0.30, 0.90) 2.38 13.85 ± 0.11 6.88 ± 0.16 0.158 ± 0.019 0.99 ± 0.12
[0.30, 0.90) 1.92 11.15 ± 0.11 6.91 ± 0.17 0.158 ± 0.020 0.99 ± 0.13
[0.30, 0.90) 1.59 9.26 ± 0.10 7.00 ± 0.17 0.150 ± 0.020 0.95 ± 0.13
[0.30, 0.90) 1.19 6.95 ± 0.07 6.79 ± 0.18 0.179 ± 0.024 1.11 ± 0.15
[0.30, 0.90) 0.79 4.61 ± 0.05 7.06 ± 0.20 0.259 ± 0.033 1.64 ± 0.21
[0.30, 0.90) 0.59 3.44 ± 0.04 6.85 ± 0.22 0.264 ± 0.036 1.65 ± 0.22
[0.30, 0.90) 0.48 2.77 ± 0.03 6.74 ± 0.21 0.325 ± 0.045 2.01 ± 0.28
[0.30, 0.90) 0.39 2.29 ± 0.03 6.73 ± 0.21 0.354 ± 0.050 2.19 ± 0.31
[0.30, 0.90) 0.34 1.97 ± 0.04 6.72 ± 0.24 0.340 ± 0.050 2.10 ± 0.31
[0.30, 0.90) 0.30 1.74 ± 0.03 6.82 ± 0.26 0.391 ± 0.055 2.44 ± 0.34
[0.30, 0.90) 0.24 1.40 ± 0.02 6.99 ± 0.26 0.411 ± 0.059 2.60 ± 0.37
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z
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σ∗∗
v = 1.02± 0.07

Fig. 10. Normalised cosmic variance σ∗∗v as a function of redshift for
galaxies with i ≤ 23 (circles). The dashed line marks the error-weighted
average of σ∗∗v , σ∗∗v = 1.02 ± 0.07, and the coloured area shows its
68% confidence interval. A colour version of this plot is available in the
electronic edition.

4.4.4. Dependence on the number density of the companion
sample

As we show in Sect. 3, two different populations are involved
in the measurement of the merger fraction: the principal sample
and the sample of companions around principal galaxies. In the
previous sections, the principal and the companion sample were
the same, and here we explore how the number density n2 of the
companion sample impacts the cosmic variance. We set i ≤ 20.5
galaxies at 0.3 ≤ z < 0.9 as principals and varied the i-band
selection of the companion galaxies from i ≤ 20.5 to i ≤ 23 in
0.5 steps. As in Sect. 4.4.2, the variable σ∗v = σv/σv (n1) was
used.

We find that the cosmic variance decreases as the number
density of the companion sample increases (Table 6 and Fig. 11).
We fit the dependence with a power-law, forcing it to pass for the

2 4 6 8 10
n2/n1

0.4

0.6

0.8

1.0

1.2

σ
∗ v

σ∗
v = (n2/n1)

−0.37

Fig. 11. Normalised cosmic variance σ∗v as a function of the relative
number density of the companion and the principal samples under study,
n2/n1. Increasing the relative density, the companion sample comprises
i ≤ 20.5, 21, 21.5, 22, 22.5, and 23 galaxies, respectively. The red
dashed line is the error-weighted least-squares fit of a power-law to the
data, σ∗v = (n2/n1)−0.37. A colour version of this plot is available in the
electronic edition.

point σ∗v (n1, n1) = 1. We find that

σ∗v (n1, n2) =
(n2

n1

)−0.37± 0.04

. (26)

We checked that it is consistent with unity if we leave free the
intercept, as we assume σ∗v (n1, n1) = 1.04 ± 0.12. In addition,
the power-law index changes slightly, σ∗v ∝ (n2/n1)−0.39± 0.08.

4.4.5. The cosmic variance in merger fraction studies based
on close pairs

In the previous sections, we have characterised the dependence
of the cosmic variance σv on the basic parameters involved in
close pair studies (Sect. 4.1): the number density of the principal
(n1, Sect. 4.4.1) and the companion sample (n2, Sect. 4.4.4), the
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Table 5. Cosmic variance σv as a function of redshift.

Principal Redshift z n1 Vc σv σ∗∗v
sample range (10−3 Mpc−3) (104 Mpc3) σv/σv(n1,Vc)

i ≤ 23 [0.30, 0.45) 0.374 14.04 ± 0.50 1.76 ± 0.01 0.276 ± 0.033 1.06 ± 0.13
i ≤ 23 [0.45, 0.60) 0.524 7.64 ± 0.31 2.29 ± 0.02 0.268 ± 0.036 0.94 ± 0.13
i ≤ 23 [0.60, 0.75) 0.679 5.83 ± 0.19 4.06 ± 0.03 0.286 ± 0.037 1.02 ± 0.13
i ≤ 23 [0.75, 0.90) 0.820 4.40 ± 0.18 5.11 ± 0.04 0.309 ± 0.043 1.05 ± 0.15

Table 6. Cosmic variance σv as a function of the companion sample’s
number density n2.

Companion n2/n1 σv σ∗v
sample σv/σv(n1)

i ≤ 20.5 1 0.587 ± 0.100 1.09 ± 0.18
i ≤ 21.0 1.75 ± 0.10 0.459 ± 0.067 0.85 ± 0.12
i ≤ 21.5 2.90 ± 0.15 0.343 ± 0.045 0.64 ± 0.08
i ≤ 22.0 4.52 ± 0.24 0.306 ± 0.038 0.57 ± 0.07
i ≤ 22.5 6.56 ± 0.33 0.258 ± 0.031 0.48 ± 0.06
i ≤ 23.0 9.42 ± 0.44 0.244 ± 0.029 0.45 ± 0.05

cosmic volume under study (Vc, Sect. 4.4.2), and the redshift
(Sect. 4.4.3). We find that

σv (n1, n2,Vc) =

0.48 ×
( n1

10−3 Mpc−3

)−0.54

×
( Vc

105 Mpc3

)−0.48

×
(n2

n1

)−0.37

. (27)

This is the main result of the present paper. We estimated
through Monte Carlo sampling that the typical uncertainty in σv
from this relation is ∼15%. The dependence of σv on redshift
should be lower than this uncertainty. In addition, σv is indepen-
dent of the search radius used to compute the merger fraction as
we demonstrated in Sect. 4.3.

4.5. Cosmic variance in spatially random samples

In this section, we further test the significance of our results
by measuring both the merger fraction and the cosmic variance
in samples randomly distributed in the sky plane. For this, we
created a set of 100 random samples with each random sam-
ple comprising 48 random sub-samples (one per ALHAMBRA
sub-field). We generated each random sub-sample by assigning a
random RA and Dec to each source in the original catalogue but
retained the original redshift of the sources. This erases the clus-
tering signal inside each ALHAMBRA sub-field (i.e., at �15′
scales), but the number density fluctuations between sub-fields
because of the clustering at scales larger than ∼15′ remains. We
estimated the merger fraction and the cosmic variance for each
random sample at 0.3 ≤ z < 0.9 as in Sect. 4.4.1, computed the
median merger fraction, 〈 fm〉, and determined the median cos-
mic variance, 〈σv〉, in the set of 100 random samples to compare
them with the values measured in the real samples. To facilitate
this comparison, we defined the variables Fm = fm/〈 fm〉 and
Σv = σv/〈σv〉. We estimated Fm and Σv for different selections
in n1 following Sect. 4.4.1, and we have show our findings in
Fig. 12.

On the one hand, the merger fraction in the real samples is
higher than in the random samples by a factor of three–four,
Fm = 4.25 − 0.27 × n1 (Fig. 12, top panel). This reflects the
clustering present in the real samples that we erased when we
randomised the positions of the sources in the sky, as well as the
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Σv = 0.81± 0.04

Fig. 12. Top panel: Merger fraction in real samples over the average
merger fraction in random samples, Fm, as a function of the number
density n1. The dotted line marks identity. The dashed line marks the
best least-squares linear fit to the data, Fm = 4.25 − 0.27n1. Bottom
panel: Cosmic variance in real samples over the average cosmic vari-
ance in random samples, Σv, as a function of the number density n1.
The dotted line marks identity. The dashed line is the error-weighted
average of the data, Σv = 0.81 ± 0.04, and the coloured area its 68%
confidence interval. A colour version of this plot is available in the elec-
tronic edition.

higher clustering of more luminous galaxies. This result is con-
sistent with previous close pair studies that compare real and ran-
dom samples (e.g., Kartaltepe et al. 2007). On the other hand, the
cosmic variance measured in the random samples is higher than
the cosmic variance in the real ones, 〈Σv〉 = 0.81 ± 0.04 (Fig. 12,
bottom panel). This implies that most of the variance between
sub-fields is unrelated with the clustering inside these sub-fields
and that the σv measured in the present paper is a real signature
of the relative field-to-field variation of the merger fraction.

4.6. Testing the independence of the 48 ALHAMBRA
sub-fields

Hitherto, we have assumed that the 48 ALHAMBRA sub-
fields are independent. However, only the seven ALHAMBRA
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Fig. 13. Normalised cosmic variance σ∗∗v as a function of n1 at 0.3 ≤
z < 0.9 for the first (circles) and the second (triangles) group of seven
independent pointings in the ALHAMBRA survey (see text for details).
The dashed line marks the error-weighted average of σ∗∗v , σ∗∗v = 1.01 ±
0.10, and the coloured area shows its 68% confidence interval. A colour
version of this plot is available in the electronic edition.
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Fig. 14. Normalised cosmic varianceσ∗∗∗v as a function of n1 for samples
selected in B-band luminosity. The inverted triangles are those samples
without a luminosity ratio imposed, and the triangles are those with a
luminosity ratio applied (Table 8). Points at the same number density
are offset when needed to avoid overlap. The dashed line marks the
error-weighted average of σ∗∗∗v , σ∗∗∗v = 1.01 ± 0.03. The coloured area
shows its 68% confidence interval. The grey area marks the 15% un-
certainty expected from our parametrisation of the cosmic variance. A
colour version of this plot is available in the electronic edition.

fields are really independent and correlations between adjacent
sub-fields should exists. This correlations could impact our σv
measurements, and in this section, we test the independence
assumption.

We defined two groups of seven independent pointings with
one per ALHAMBRA field. The first group comprises of the
pointings f02p01, f03p02, f04p01, f05p01, f06p01, f07p03, and
f08p02, where f0? refers to the ALHAMBRA field and p0? to the
pointing in the field. The second group comprises the pointings
f02p02, f03p01, f04p01, f05p01, f06p02, f07p04, and f08p01.
Note that fields f04 and f05 have only one pointing in the cur-
rent ALHAMBRA release. Each of the previous pointings probe
a cosmic volume four times higher than our fiducial sub-fields
with a median Vc = (54.49 ± 0.59) × 104 Mpc3 for the first
group and Vc = (55.24 ± 0.50) × 104 Mpc3 for the second one
at 0.3 ≤ z < 0.9. Then, we measured the merger fraction in
the seven independent pointings of each group, and we obtained
σv applying the MLE. We repeated this procedure for different
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Fig. 15. Normalised cosmic variance σ∗∗∗v as a function of n1 for sam-
ples selected in stellar mass. The dots are those samples without a
mass ratio imposed, and the squares are those with a mass ratio applied
(Table 9). Points at the same number density are offset when needed
to avoid overlap. The dashed line marks the error-weighted average of
σ∗∗∗v , σ∗∗∗v = 1.02 ± 0.03. The coloured area shows its 68% confidence
interval. The grey area marks the 15% uncertainty expected from our
parametrisation of the cosmic variance. A colour version of this plot is
available in the electronic edition.

Table 7. Cosmic variance σv measured from seven independent point-
ings in the ALHAMBRA survey.

Principal n1 σv σ∗∗v
sample (10−3 Mpc−3) σv/σv(n1,Vc)

i ≤ 23.0 a 7.32 ± 0.19 0.055 ± 0.019 0.76 ± 0.26
i ≤ 22.5 a 5.20 ± 0.18 0.088 ± 0.028 1.01 ± 0.32
i ≤ 22.0 a 3.57 ± 0.14 0.132 ± 0.040 1.23 ± 0.37
i ≤ 21.5 a 2.24 ± 0.09 0.175 ± 0.054 1.27 ± 0.39
i ≤ 21.0 a 1.40 ± 0.06 0.290 ± 0.089 1.63 ± 0.50
i ≤ 20.5 a 0.82 ± 0.05 0.280 ± 0.107 1.18 ± 0.45

i ≤ 23.0 b 7.05 ± 0.14 0.080 ± 0.024 1.09 ± 0.32
i ≤ 22.5 b 4.99 ± 0.09 0.084 ± 0.027 0.95 ± 0.30
i ≤ 22.0 b 3.41 ± 0.11 0.094 ± 0.034 0.86 ± 0.31
i ≤ 21.5 b 2.22 ± 0.05 0.106 ± 0.047 0.77 ± 0.34
i ≤ 21.0 b 1.33 ± 0.05 0.172 ± 0.069 0.95 ± 0.38
i ≤ 20.5 b 0.75 ± 0.02 0.293 ± 0.112 1.19 ± 0.45

Notes. (a) The seven pointings used are: f02p01, f03p02, f04p01,
f05p01, f06p01, f07p03, and f08p02. The probed cosmic volume at
0.3 ≤ z < 0.9 is Vc = (54.49 ± 0.59) × 104 Mpc3. (b) The seven
pointings used are: f02p02, f03p01, f04p01, f05p01, f06p02, f07p04,
and f08p01. The probed cosmic volume at 0.3 ≤ z < 0.9 is Vc =
(55.24 ± 0.50) × 104 Mpc3.

selections from i ≤ 23 to i ≤ 20.5 in 0.5 magnitude steps.
Finally, we defined σ∗∗v = σv/σv (n1,Vc), so the values of σ∗∗v
would be dispersed around unity if the cosmic variance mea-
sured from the seven independent areas is described well by the
cosmic variance measured from the 48 sub-fields. We summarise
our results in Table 7 and in Fig. 13.

We find that the cosmic variance from the seven independent
fields nicely agree with our expectations from Eq. (27) with an
error-weighted average of σ∗∗v = 1.01 ± 0.10. Thus, assuming
the 48 ALHAMBRA sub-fields as independent is an acceptable
approximation to study σv. In addition, the uncertainties in σv
are lower by a factor of two when we use the 48 sub-fields, im-
proving the statistical significance of our results.
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Table 8. Cosmic variance σv of luminosity-selected samples.

Principal Companion Redshift n1 n2/n1 Vc σv σ∗∗∗v
sample sample range (10−3 Mpc−3) (104 Mpc3) σv/σv(n1, n2,Vc)

MB ≤ −20.5 MB ≤ −20.5 [0.30, 0.90) 1.63 ± 0.06 1 13.85 ± 0.11 0.305 ± 0.050 0.97 ± 0.16
MB ≤ −20.0 MB ≤ −20.0 [0.30, 0.90) 2.95 ± 0.08 1 13.85 ± 0.11 0.250 ± 0.034 1.09 ± 0.15
MB ≤ −20.0 MB ≤ −20.0 [0.30, 0.69) 2.67 ± 0.08 1 6.98 ± 0.06 0.309 ± 0.050 0.92 ± 0.15
MB ≤ −20.0 MB ≤ −20.0 [0.69, 0.90) 3.37 ± 0.11 1 6.87 ± 0.06 0.276 ± 0.041 0.92 ± 0.14
MB ≤ −19.5 MB ≤ −19.5 [0.30, 0.90) 4.63 ± 0.11 1 13.85 ± 0.11 0.213 ± 0.026 1.19 ± 0.14
MB ≤ −19.5 MB ≤ −19.5 [0.30, 0.60) 4.12 ± 0.15 1 4.68 ± 0.04 0.284 ± 0.042 0.88 ± 0.13
MB ≤ −19.5 MB ≤ −19.5 [0.60, 0.77) 4.72 ± 0.14 1 4.68 ± 0.04 0.288 ± 0.038 0.96 ± 0.13
MB ≤ −19.5 MB ≤ −19.5 [0.77, 0.90) 5.16 ± 0.19 1 4.49 ± 0.04 0.302 ± 0.040 1.04 ± 0.14
MB ≤ −19.0 MB ≤ −19.0 [0.30, 0.90) 6.76 ± 0.14 1 13.85 ± 0.11 0.165 ± 0.020 1.13 ± 0.14
MB ≤ −19.0 MB ≤ −19.0 [0.30, 0.60) 6.10 ± 0.18 1 4.68 ± 0.04 0.223 ± 0.034 0.86 ± 0.13
MB ≤ −19.0 MB ≤ −19.0 [0.60, 0.77) 6.79 ± 0.17 1 4.68 ± 0.04 0.251 ± 0.031 1.02 ± 0.13
MB ≤ −19.0 MB ≤ −19.0 [0.77, 0.90) 7.25 ± 0.28 1 4.49 ± 0.04 0.227 ± 0.029 0.94 ± 0.12
MB ≤ −20.5 MB ≤ −20.0 [0.30, 0.90) 1.63 ± 0.06 1.81 ± 0.08 13.85 ± 0.11 0.262 ± 0.035 1.03 ± 0.14
MB ≤ −20.5 MB ≤ −19.5 [0.30, 0.90) 1.63 ± 0.06 2.84 ± 0.12 13.85 ± 0.11 0.222 ± 0.027 1.04 ± 0.13
MB ≤ −20.5 MB ≤ −19.0 [0.30, 0.90) 1.63 ± 0.06 4.12 ± 0.12 13.85 ± 0.11 0.184 ± 0.022 0.98 ± 0.12
MB ≤ −20.0 MB ≤ −19.5 [0.30, 0.90) 2.95 ± 0.06 1.57 ± 0.06 13.85 ± 0.11 0.207 ± 0.026 1.07 ± 0.13
MB ≤ −20.0 MB ≤ −19.0 [0.30, 0.90) 2.95 ± 0.06 2.29 ± 0.08 13.85 ± 0.11 0.171 ± 0.020 1.01 ± 0.12
MB ≤ −19.5 MB ≤ −19.0 [0.30, 0.90) 4.63 ± 0.11 1.46 ± 0.05 13.85 ± 0.11 0.163 ± 0.019 1.04 ± 0.12

MB ≤ −20.5 R = 1/2 [0.30, 0.90) 1.63 ± 0.06 2.31 ± 0.10 13.85 ± 0.11 0.268 ± 0.040 1.16 ± 0.17
MB ≤ −20.5 R = 1/4 [0.30, 0.90) 1.63 ± 0.06 4.15 ± 0.17 13.85 ± 0.11 0.216 ± 0.026 1.16 ± 0.14
MB ≤ −20.5 R = 1/10 [0.30, 0.60) 1.41 ± 0.05 8.24 ± 0.37 4.68 ± 0.04 0.296 ± 0.039 1.12 ± 0.15
MB ≤ −20.0 R = 1/2 [0.30, 0.90) 2.95 ± 0.08 1.92 ± 0.07 13.85 ± 0.11 0.210 ± 0.031 1.16 ± 0.17
MB ≤ −20.0 R = 1/4 [0.30, 0.75) 2.74 ± 0.09 3.18 ± 0.12 8.74 ± 0.07 0.195 ± 0.026 1.01 ± 0.13
MB ≤ −20.0 R = 1/10 [0.30, 0.45) 2.78 ± 0.13 5.95 ± 0.33 1.76 ± 0.01 0.329 ± 0.045 1.00 ± 0.14
MB ≤ −19.5 R = 1/2 [0.30, 0.75) 4.32 ± 0.10 1.75 ± 0.05 8.74 ± 0.05 0.194 ± 0.031 1.03 ± 0.16
MB ≤ −19.5 R = 1/4 [0.30, 0.60) 4.12 ± 0.15 2.82 ± 0.13 4.68 ± 0.04 0.173 ± 0.027 0.79 ± 0.12

4.7. Expectations for luminosity- and mass-selected samples

Throughout this paper, we have focused our analysis in (ap-
parent) bright galaxies with i ≤ 23. This ensures excellent
photometric redshifts and provides reliable merger fraction mea-
surements (Sect. 4.3). However, one should be interested on the
merger fraction of galaxies selected by their luminosity, stellar
mass, colour, etc. Because the bias of the galaxies with respect
to the underlying dark-matter distribution depends on the selec-
tion of the sample, our prescription to estimate σv could not be
valid for physically selected samples (Sect. 4.1). In this section,
we compare the expected cosmic variance from Eq. (27) with the
actual cosmic variance of several luminosity- and stellar mass-
selected samples to set the limits and the reliability of our sug-
gested parametrisation.

We defined the variable σ∗∗∗v = σv/σv (n1, n2,Vc), so the val-
ues of σ∗∗∗v would be dispersed around unity if no extra depen-
dence on the luminosity or the stellar mass exists. Throughout
the present paper, we imposed neither luminosity nor mass ra-
tio constraints between the galaxies in the close pairs. However,
merger fraction studies impose such constraints to study major
or minor mergers. This ratio is defined as R = M�,2/M�,1, where
M�,1 and M�,2 are the stellar masses of the principal and the
companion galaxy in the pair, respectively. The definition of R
in the B-band luminosity LB case is similar. Major mergers are
usually defined with 1/4 ≤ R ≤ 1, while minor mergers with
R ≤ 1/4. We explored different R cases and estimated n2 as the
number density of the LB ≥ RLB,1 or the M� ≥ RM�,1 popula-
tion. The properties of all the studied samples are summarised
in Tables 8 and 9. The redshift range probed in each case was
chosen to ensure volume-limited companion samples. We stress
that the samples in Tables 8 and 9 mimic typical observational
selections and R values from the literature.

On the one hand, we find that the error-weighted average
of all the luminosity-selected samples is σ∗∗∗v = 1.01 ± 0.03,
which is compatible with unity as we expected, if no (or limited)
dependence on the selection exists (Fig. 14). We obtainedσ∗∗∗v =
1.03 ± 0.05 from samples with the luminosity ratio R applied,
while σ∗∗∗v = 1.00 ± 0.03 from samples without it. On the other
hand, we find σ∗∗∗v = 1.02 ± 0.03 for the stellar mass-selected
samples (Fig. 15). As noted previously, the value is compatible
with unity. We obtained σ∗∗∗v = 0.98 ± 0.05 from samples with
the mass ratio R applied, while σ∗∗∗v = 1.03± 0.03 from samples
without it.

We conclude that our results based on i-band selected sam-
ples provide a good description of the cosmic variance for phys-
ically selected samples with a limited dependence (� 15%) on
both the luminosity and the stellar mass selection. Thus, only
n1, n2, and Vc are needed to estimate a reliable σv for merger
fractions studies based on close pairs.

5. Summary and conclusions
We use the 48 sub-fields of ∼180 arcmin2 in the ALHAMBRA
survey (total effective area of 2.38 deg2) to empirically estimate
the cosmic variance that affects merger fraction studies based on
close pairs for the first time in the literature. We find that the
distribution of the merger fraction is log-normal, and we use a
maximum likelihood estimator to measure the cosmic variance
σv unaffected by observational errors (including the Poisson shot
noise term).

We find that the better parametrisation of the cosmic variance
for merger fraction studies based on close pairs is (Eq. (27)),

σv (n1, n2,Vc) =

0.48 ×
( n1

10−3 Mpc−3

)−0.54

×
( Vc

105 Mpc3

)−0.48

×
(n2

n1

)−0.37

,
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Table 9. Cosmic variance σv of stellar mass-selected samples.

Principal Companion Redshift n1 n2/n1 Vc σv σ∗∗∗v
sample sample range (10−3 Mpc−3) (104 Mpc3) σv/σv(n1, n2,Vc)

M� ≥ 1010.75 M� M� ≥ 1010.75 M� [0.30, 0.90) 0.67 ± 0.03 1 13.85 ± 0.11 0.386 ± 0.082 0.76 ± 0.16
M� ≥ 1010.5 M� M� ≥ 1010.5 M� [0.30, 0.90) 1.35 ± 0.05 1 13.85 ± 0.11 0.406 ± 0.063 1.16 ± 0.18
M� ≥ 1010.25 M� M� ≥ 1010.25 M� [0.30, 0.90) 2.33 ± 0.07 1 13.85 ± 0.11 0.309 ± 0.040 1.19 ± 0.15
M� ≥ 1010.25 M� M� ≥ 1010.25 M� [0.30, 0.69) 2.30 ± 0.08 1 6.98 ± 0.06 0.348 ± 0.050 0.96 ± 0.14
M� ≥ 1010.25 M� M� ≥ 1010.25 M� [0.69, 0.90) 2.46 ± 0.09 1 6.87 ± 0.06 0.410 ± 0.054 1.16 ± 0.15
M� ≥ 1010.0 M� M� ≥ 1010.0 M� [0.30, 0.90) 3.49 ± 0.11 1 13.85 ± 0.11 0.226 ± 0.028 1.08 ± 0.13
M� ≥ 1010.0 M� M� ≥ 1010.0 M� [0.30, 0.69) 3.32 ± 0.12 1 6.98 ± 0.06 0.242 ± 0.036 0.81 ± 0.12
M� ≥ 1010.0 M� M� ≥ 1010.0 M� [0.69, 0.90) 3.62 ± 0.12 1 6.87 ± 0.06 0.323 ± 0.040 1.13 ± 0.14
M� ≥ 1011.0 M� M� ≥ 1010.5 M� [0.30, 0.90) 0.20 ± 0.01 6.75 ± 0.40 13.85 ± 0.11 0.513 ± 0.084 1.03 ± 0.14
M� ≥ 1011.0 M� M� ≥ 1010.25 M� [0.30, 0.90) 0.20 ± 0.01 11.65 ± 0.68 13.85 ± 0.11 0.439 ± 0.065 1.11 ± 0.16
M� ≥ 1011.0 M� M� ≥ 1010.0 M� [0.30, 0.90) 0.20 ± 0.01 17.45 ± 1.03 13.85 ± 0.11 0.350 ± 0.047 1.06 ± 0.17
M� ≥ 1010.75 M� M� ≥ 1010.5 M� [0.30, 0.90) 0.67 ± 0.03 2.01 ± 0.12 13.85 ± 0.11 0.423 ± 0.063 1.08 ± 0.16
M� ≥ 1010.75 M� M� ≥ 1010.25 M� [0.30, 0.90) 0.67 ± 0.03 3.48 ± 0.19 13.85 ± 0.11 0.340 ± 0.043 1.06 ± 0.13
M� ≥ 1010.75 M� M� ≥ 1010.0 M� [0.30, 0.90) 0.67 ± 0.03 5.21 ± 0.28 13.85 ± 0.11 0.265 ± 0.032 0.96 ± 0.12
M� ≥ 1010.5 M� M� ≥ 1010.25 M� [0.30, 0.90) 1.35 ± 0.05 1.73 ± 0.08 13.85 ± 0.11 0.307 ± 0.039 1.08 ± 0.14
M� ≥ 1010.5 M� M� ≥ 1010.0 M� [0.30, 0.90) 1.35 ± 0.05 5.21 ± 0.13 13.85 ± 0.11 0.257 ± 0.031 1.05 ± 0.13
M� ≥ 1010.25 M� M� ≥ 1010.0 M� [0.30, 0.90) 2.33 ± 0.07 1.50 ± 0.07 13.85 ± 0.11 0.233 ± 0.028 1.04 ± 0.12

M� ≥ 1011.0 M� R = 1/4 [0.30, 0.90) 0.20 ± 0.01 8.75 ± 0.53 12.63 ± 0.10 0.562 ± 0.091 1.28 ± 0.21
M� ≥ 1011.0 M� R = 1/10 [0.30, 0.90) 0.20 ± 0.01 17.45 ± 1.03 12.63 ± 0.10 0.367 ± 0.049 1.08 ± 0.14
M� ≥ 1010.75 M� R = 1/2 [0.30, 0.90) 0.67 ± 0.03 2.28 ± 0.13 12.63 ± 0.10 0.332 ± 0.068 0.88 ± 0.18
M� ≥ 1010.75 M� R = 1/4 [0.30, 0.90) 0.67 ± 0.03 4.13 ± 0.22 12.63 ± 0.10 0.354 ± 0.049 1.17 ± 0.16
M� ≥ 1010.75 M� R = 1/10 [0.30, 0.60) 0.57 ± 0.03 8.05 ± 0.52 4.68 ± 0.04 0.375 ± 0.053 0.87 ± 0.12
M� ≥ 1010.5 M� R = 1/2 [0.30, 0.90) 1.35 ± 0.05 1.86 ± 0.09 12.63 ± 0.10 0.290 ± 0.049 1.04 ± 0.18
M� ≥ 1010.5 M� R = 1/4 [0.30, 0.60) 1.28 ± 0.06 2.95 ± 0.18 4.68 ± 0.04 0.390 ± 0.058 0.96 ± 0.14
M� ≥ 1010.25 M� R = 1/2 [0.30, 0.60) 2.33 ± 0.08 1.51 ± 0.08 4.68 ± 0.04 0.311 ± 0.059 0.83 ± 0.16
M� ≥ 1010.0 M� R = 1/2 [0.30, 0.60) 3.27 ± 0.11 1.50 ± 0.07 4.68 ± 0.04 0.287 ± 0.056 0.91 ± 0.18

where n1 and n2 are the cosmic average number density of the
principal and the companion populations under study, respec-
tively, and Vc is the cosmological volume probed by our survey
in the redshift range of interest. We stress that n1 and n2 should
be estimated from general luminosity or mass function studies
and that measurements from volumes dominated by structures
(e.g., clusters or voids) should be avoided. In addition,σv is inde-
pendent of the search radius used to compute the merger fraction.
The typical uncertainty in σv from our relation is ∼15%. The de-
pendence of the cosmic variance on redshift should be lower than
this uncertainty. Finally, we checked that our formula provides
a good estimation of σv for luminosity- and mass-selected sam-
ples and for close pairs with a given luminosity or mass ratio R
between the galaxies in the pair. In the latter case, n2 is the aver-
age number density of those galaxies brighter or more massive
than RL1 or RM�,1, respectively.

Equation (27) provides the expected cosmic variance of an
individual merger fraction measurement fm at a given field and
redshift range. The 68% confidence interval of this merger frac-
tion is [ fme−σv , fmeσv ]. This interval is independent of the error
in the measurement of fm, so both sources of uncertainty should
be added to obtain an accurate description of the merger fraction
error in pencil-beam surveys. If we have access to several inde-
pendent fields j for our study, we should combine the cosmic
variance σ j

v of each single field with the following formula (see
Moster et al. 2011, for details):

σ2
v,tot =

∑
j (V j

c σ
j
v)2

(
∑

j V j
c )2
, (28)

where V j
c is the cosmic volume probed by each single field in the

redshift range of interest.

Thanks to the Eqs. (27) and (28), we can estimate the im-
pact of cosmic variance in close pair studies from the liter-
ature. For example, Bundy et al. (2009) measure the major
merger fraction in the two GOODS fields. We expect σv ∼ 0.42
for massive (M� ≥ 1011 M�) galaxies, while σv ∼ 0.16 for
M� ≥ 1010 M� galaxies. The studies of de Ravel et al. (2009)
and López-Sanjuan et al. (2011) explore the merger fraction in
the VVDS-Deep. We expect σv � 0.09 for major mergers and
σv � 0.07 for minor mergers in this survey. Lin et al. (2008)
explore the merger properties of MB ≤ −19 galaxies in three
DEEP2 fields. We estimate σv ∼ 0.03 for their results. Several
major close pair studies have been conducted in the COSMOS
field (e.g., de Ravel et al. 2011; Xu et al. 2012). Focusing in
mass-selected samples, we expect σv ∼ 0.17 for massive galax-
ies, while σv ∼ 0.07 for M� ≥ 1010 M� galaxies. In addition,
we estimate σv ∼ 0.13 for the minor merger fractions reported
by López-Sanjuan et al. (2012) in the COSMOS field. Regarding
local merger fractions (z � 0.1), the expected cosmic variance in
the study of De Propris et al. (2005) in the MGC is σv ∼ 0.03,
while it is σv < 0.03 in the study of Patton et al. (2000). Finally,
studies based in the full SDSS area are barely affected by cosmic
variance with σv � 0.005 (e.g., Patton & Atfield 2008).

Extended samples over larger sky areas are needed to con-
strain the subtle redshift evolution of the comic variance and
its dependence on the selection of the samples. Future large
photometric surveys such as J-PAS3 (Javalambre – Physics of
the accelerating universe Astrophysical Survey, Benítez et al.
2014), which will provide excellent photometric redshifts with
δz ∼ 0.003 over 8500 deg2 in the northern sky, are fundamental
to progress on this topic.

In the present paper, we have studied the intrinsic disper-
sion of the merger fraction measured in the 48 ALHAMBRA

3 http://j-pas.org/
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sub-fields in detail. In future papers, we will explore the de-
pendence of the median merger fraction, as estimated as eμ, on
stellar mass, colour, or morphology (see Pović et al. 2013, for
details about the morphological classification in ALHAMBRA),
and we will compare the ALHAMBRA measurements (both the
median and the dispersion) to the expectations from cosmologi-
cal simulations.
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Appendix A: Maximum likelihood estimation
of the cosmic variance σv

Maximum likelihood estimators (MLEs) have been used in a
wide range of topics in astrophysics. For example, Naylor &
Jeffries (2006) used a MLE to fit colour-magnitude diagrams,
Arzner et al. (2007) to improve the determination of faint X-ray
spectra, Makarov et al. (2006) to improve distance estimates
using red giant branch stars, and López-Sanjuan et al. (2008,
2009a,b, 2010b) to estimate reliable merger fractions from mor-
phological criteria. The MLEs are based on the estimation of the
most probable values of a set of parameters, which define the
probability distribution that describes an observational sample.

The general MLE operates as follows. Throughout this
Appendix, we denote the probability to obtain the values a given
the parameters b as P (a | b). Being x j the measured values in
the ALHAMBRA field j, and θ the parameters that we want to
estimate, we may express the joined likelihood function as

L(x j | θ) ≡ − ln

⎡⎢⎢⎢⎢⎢⎢⎣
∏

j

P (x j | θ)
⎤⎥⎥⎥⎥⎥⎥⎦ = −

∑
j

ln
[
P (x j | θ)

]
. (A.1)

If we are able to express P (x j | θ) analytically, we can minimise
Eq. (A.1) to obtain the best estimation of the parameters θ, as de-
noted as θML. In our case, x j is the observed value of the merger
fraction in log-space for the ALHAMBRA sub-field j, where
x j ≡ f ′m, j = ln fm, j. We decided to work in log-space because
that makes the problem analytic and simplifies the implementa-
tion of the method without losing mathematical rigour.

The ALHAMBRA sub-fields are assumed to have a real
merger fraction (not affected by observational errors) that define
a Gaussian distribution in log-space,

PG ( f ′real, j | μ, σv) =
1√

2πσv
exp

⎡⎢⎢⎢⎢⎢⎣− ( f ′real, j − μ)2

2σ2
v

⎤⎥⎥⎥⎥⎥⎦ · (A.2)

Observational errors cause the observed f ′m, j to differ from their
respective real values f ′real, j. The observed f ′m, j are assumed to be
extracted for a Gaussian distribution with mean f ′real, j and stan-
dard deviation σo, j (the observational errors),

PG ( f ′m, j | f ′real, j, σo, j) =
1√

2πσo, j

exp

⎡⎢⎢⎢⎢⎢⎣− ( f ′m, j − f ′real, j)
2

2σ2
o, j

⎤⎥⎥⎥⎥⎥⎦ · (A.3)

We assumed that the observational errors are Gaussian in log-
space, or, that they are log-normal in observational space. This is
a good approximation of the reality because we are dealing with
fractions that cannot be negative and that have asymmetric con-
fidence intervals, as shown by Cameron (2011). In our case, we
estimated the observational errors in log-space as σo = σ f / fm.
We checked that the values of σo derived from our jackknife er-
rors are similar to those estimated from the Bayesian approach
in Cameron (2011) with a difference between them �15%.

We obtained the probability P (x j | θ) of each ALHAMBRA
sub-field by the total probability theorem:

P ( f ′m, j | μ, σv, σo, j) =

∫ ∞

−∞
PG ( f ′real, j | μ, σv) × PG ( f ′m, j | f ′real, j, σo, j) d f ′real, j, (A.4)

where f ′m, j = x j and (μ, σv, σo, j) = θ in Eq. (A.1). Note
that the values of σo, j are the measured uncertainties for each

ALHAMBRA sub-field, so the only unknowns are the variables
μ and σv, which we want to estimate. Note also that we integrate
over the variable f ′real, j, so we are not be able to estimate the real
merger fractions individually, but only the underlying Gaussian
distribution that describes the sample.

The final joined likelihood function, Eq. (A.1) after integrat-
ing Eq. (A.4), is

L ( f ′m, j | μ, σv, σo, j) = −1
2

∑
j

ln (σ2
v + σ

2
o, j) +

( f ′m, j − μ)2

σ2
v + σ

2
o, j

· (A.5)

With the minimisation of this function, we obtain the best esti-
mation of both μ and the cosmic variance σv, which are unaf-
fected by observational errors.

In addition, we can analytically estimate the errors in the pa-
rameters above. We can obtain those via an expansion of the
function L ( f ′m, j | μ, σv, σo, j) in a Taylor’s series of its variables
θ = (μ, σv, σo, j) around the minimisation point θML. The previ-
ous minimisation process made the first L derivative null, and
we obtain

L = L(θML) +
1
2

(θ − θML)THxy(θ − θML), (A.6)

where Hxy is the Hessian matrix, and T denotes the transpose
matrix. The inverse of the Hessian matrix provides an estimate
of the 68% confidence intervals of μML and σML, as well as the
covariance between them. The Hessian matrix of the joined like-
lihood function L is defined as

Hxy =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
∂2L
∂μ2

∂2L
∂μ∂σv

∂2L
∂σv ∂μ

∂2L
∂σ2
v

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (A.7)

with

∂2L
∂μ2
= −

∑
i

1

σ2
v + σ

2
o, j

, (A.8)

∂2L
∂μ ∂σv

=
∂2L
∂σv ∂μ

= −2
∑

i

σv( f ′m, j − μ)
(σ2
v + σ

2
o, j)

2
, (A.9)

and

∂2L
∂σ2
v

=
∑

i

(σ2
o, j − 3σ2

v ) × ( f ′m, j − μ)2

(σ2
v + σ

2
o, j)

3
−

(σ2
o, j − σ2

v )

(σ2
v + σ

2
o, j)

2
· (A.10)

Then, we computed the inverse of the minus Hessian, hxy =

(−Hxy)−1. Finally, we estimated the variances of our inferred pa-
rameters as σ2

μ = h11 and σ2
σv
= h22 because maximum likeli-

hood theory states that σ2
θx
≤ hxx.

We tested the performance and the limitations of our MLE
through synthetic catalogues of merger fractions. We created
several sets of 1000 synthetic catalogues with each of them com-
posed by a number n of merger fractions randomly drawn from
a log-normal distribution with μin = log 0.05 and σv,in = 0.2 and
affected by observational errorsσo. We explored the n = 50, 250
and 1000 cases for the number of merger fractions and varied
the observational errors from σo = 0.1 to 0.5 in 0.1 steps. That
is, we explored observational errors in the measurement of the
merger fraction from Δσ ≡ σo/σv = 0.5 to 2.5 times the cosmic
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Fig. A.1. Recovered cosmic variance over input cosmic variance (top
panel) and median σσv over the dispersion of the recovered cosmic
variance (bottom panel) as a function of Δσ. In both panels, trian-
gles, circles, and squares are the results from synthetic catalogues with
n = 50, 250, and 1000, respectively. White symbols show the results
from the BLS fit to the data (σv,BLS), while those coloured show the
ones from the MLE (σv,ML). The n = 50 and 1000 points are shifted to
avoid overlap. The dashed lines mark identity, and the solid line in the
top panel shows the expectation from a convolution of two Gaussians
in log-space, σv,BLS/σv,in =

√
1 + (Δσ)2.

variance that we want to measure. We checked that the results
below are similar for any value of σv,in. We find that

1. The median value of the recovered μ, as noted μML, in each
set of synthetic catalogues is similar to μin, with deviations
lower than 0.5% in all cases under study. However, we find
that σv,ML for n = 50 catalogues overestimates σv,in more
than 5% at Δσ � 2.0, while we recover σv,in well even

with Δσ = 2.5 (Fig. A.1, top panel) for n = 1000. This
means that larger data sets are needed to recover the under-
lying distribution as the observational errors increase.

2. We also study the values recovered by a best least-squares
(BLS) fit of Eq. (18) to the synthetic catalogues. We find
that (i) the BLS fit recovers the right values of μin. This
was expected, since the applied observational errors pre-
serve the median of the initial distribution. (ii) The BLS fit
overestimates σv,in in all cases. The recovered values depart
from the initial one as expected from a convolution of two
Gaussians with a variance σv,in and σo, where σv,BLS/σv,in =√

1 + (Δσ)2. The MLE performs a de-convolution of the ob-
servational errors, recovering accurately the initial cosmic
variance (Fig. A.1, top panel).

3. The estimated variances of μ and σv are reliable. That is, the
median variancesσμ and σσv estimated by the MLE are sim-
ilar to the dispersion of the recovered values, as noted sμ and
sσv , in each set of synthetic catalogues. The difference be-
tween both variances for μ is lower than 5% in all the probed
cases. However, we find that σσv for n = 50 catalogues over-
estimates sσv , which is more than 5% at Δσ � 1.5: this is
the limit of the MLE to estimate reliable uncertainties with
this number of data (Fig. A.1, bottom panel). Because the
estimated variance tends asymptotically to sσv for a large
number of data, σσv for n = 1000 catalogues deviates less
from the expected value than for n = 50 synthetic catalogues.
Note that the value of σv is still unbiased as such large ob-
servational errors (Fig. A.1, top panel), when the estimated
variance σσv deviates from the expectations at large Δσ, and
we can roughly estimate σσv through realistic synthetic cat-
alogues as those in this Appendix.

4. The variances of the recovered parameters decreases with n
and increases with σo. That reflects the loss of information
due to the observational errors. Remark that the MLE takes
these observational errors into account to estimate the pa-
rameters and their variance.

We conclude that the MLE developed in this Appendix is not
biased, providing accurate variances, and we can recover reli-
able uncertainties of the cosmic variance σv in ALHAMBRA
(n = 48) for Δσ � 1.5. Note that reliable values of σv in
ALHAMBRA are recovered at Δσ � 2.0. We checked that the
average Δσ in our study is 0.60 (the average observational er-
ror is σo = 0.18), and the maximum value is Δσ = 0.85. Thus,
the results in the present paper are robust against the effect of
observational errors.
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