Modelo no lineal banda ancha para transistores HBT de SiGe

J. P. Pascual, T. Fernández, J.M. Zamanillo, Mº L. De La Fuente, E. Artal (*), Daniel Hill (**)

(*) Departamento de Ingeniería de Comunicaciones.
Tel.:+34.942.201397 Fax: +34.942.201488 E-mail: pascual@dicom.unican.es

(**)University of Liverpool. U.K.

Abstract: A new non linear model for SiGe HBTs, obtained with extraction techniques from DC and RF measurements is presented. These equivalent circuit based model is able to characterise the device from low frequencies (100 Mhz) up to the millimetre band (40 GHz). Devices modelled have different dimensions of base and emitter contacts. The HBT devices have been fabricated by Daimler Chrysler Research Centre in Ulm (Germany). Experimental non linear tests show good agreement with simulated values.

- **Introducción.** Se presenta un modelo no lineal de circuito equivalente con topología en π para transistores HBT de SiGe con una nueva ecuación para la corriente de colector. El modelo se ha aplicado para el ajuste de medidas en DC y de parámetros S hasta 40 GHz con resultados satisfactorios.

- **Dispositivos y tecnología.** Los transistores HBT de SiGe, objeto de este estudio han sido proporcionados por Daimler Chrysler. El paso principal de este proceso son los altos valores de ft y fmax [1]. Esta tecnología permite la inversión de dopado (dopado de la base mayor que el dopado de emisor). Esto permite baja resistencia de base con alta ft gracias a sus estrecha anchura de base. Diversos circuitos han sido diseñados y medidos usando esta tecnología [2]. Transistores HBT de 1, 2 y 6 dedos y distintas áreas (1X7 um², 1X10 um² 1X20um²) (ver foto en figura 1) han sido medidos y ajustados al modelo propuesto.

- **Caracterización de alta frecuencia.** El equipo de medida ha consistido en un conjunto de fuentes de corriente y voltaje, adecuadas para respuesta rápida (operación pulsada) controladas por ordenador, un analizador vectorial de redes (HP8510) y un analizador de espectros (HP series 7000) operando con mezcladores externos hasta la banda de 50 GHz. Las medidas de DC se han efectuado usando como variables de barrido la corriente de base y el voltaje colector-emisor. En cada punto de polarización se obtuvieron los parámetros S desde 100 MHz hasta 40 GHz.

- **Modelo no lineal.** El modelo no lineal completo consiste en 3 no linealidades con topología en forma de π: La resistencia de base, el diodo base-emisor y la fuente de corriente no lineal de colector. La resistencia de base se modela como una función no lineal de la corriente de base y el diodo base emisor sigue la forma exponencial habitual. Se propone una nueva ecuación para la corriente de colector del HBT de SiGe basada en la propuesta por [3] para HBTs de AlAsGa con algunas modificaciones para mejorar el ajuste e incrementar la convergencia en análisis, disminuyendo así el tiempo de CPU.

La expresión es la siguiente:

\[
I_c = \beta \frac{\sinh(x_6) + \cosh(x_6) \tanh(x_8 V_{cei})}{\cosh(x_9) + \sinh(x_9) \tanh(x_8 V_{cei})} \frac{\sinh(x_2)}{I_{bn}} x_3 + x_4 \frac{\tanh(x_5 I_{bn})}{2} V_{cei}^2
\]

\[
x_{10} = x_{100} \left(\frac{T - T_0}{T_0} \right) - 1
\]

\[
x_0 = x_2 + \frac{x_7}{V_{cei} I_{bn}} + \frac{x_8}{\sqrt{I_{bn}}}
\]

\[
I_{bn} = \frac{I_b}{I_{b0}}
\]

\[
\beta = x_1 + b_1 I_b + b_2 I_b^2 + b_3 I_b^3
\]
Donde I_c es la corriente de colector, I_b es la corriente de base V_{ce} es la tensión intrínseca colector-emisor. x_1,...,x_6, x_{100}, I_{on}, b_1,...,b_4 son constantes de ajuste. T es la temperatura actual y T_0 la de referencia.

Figura 1: Transistor de 6 dedos de 7 µm cada uno.

En la figura 2 se aprecia el buen acuerdo entre medidas y simulaciones. Las curvas de DC mostradas corresponden a un dispositivo de 6 dedos-7 µm². La ecuación es continua y derivable. Las derivadas ∂I_c/∂V_b y ∂I_c/∂V_{ce} medidas y simuladas se comparan satisfactoriamente.

El modelo se extrajo de medidas en la región de polarización directa y prevé la inclusión del fenómeno de autocalentamiento que causa la caída de la corriente con valores altos de V_{ce} para corrientes de colector. Además de medidas de DC se han efectuado medidas de parámetros S (ver en figura 3 comparación con simulación para el transistor de 6 dedos en una polarización dada) y de potencia.

Figura 2: Curvas de DC medidas y simuladas.

Figura 3: S21 medido y simulado para una polarización fija hasta 40 GHz.

Conclusión:

Se ha propuesto un nuevo modelo no lineal para dispositivos HBT de SiGe que incluye el modelo no lineal para la resistencia de base propio de modelos con topología en T [4], pero en una más simple topología π. El modelo incluye una ecuación matemáticamente coherente para la corriente de colector y su validez se ha comprobado bajo distintos modos de operación.

Referencias:

Agradecimientos

Este trabajo ha sido financiado por el programa europeo TMR Nº FMRX-CT96-0050 “CAD and Verification of novel mmwave and submmwave circuits”. Nuestro agradecimiento a J.F.Luy, C. Rheinfelder y K.Strohm de Daimler Chrysler por proporcionarnos muestras de los dispositivos.