Temperature fiber optic sensor using a thermosensible hydrogel

Rafael Coello1a, Mariella Arcosa, Denisse Chanaa, Kevin Contrerasa, Guillermo Baldwinb, Juan Carlos Ruedab, Mauro Lomerc

aLaboratorio de Óptica, bLaboratorio de Polímeros, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Apartado Postal 1761, Lima 32, Perú; cPhotonics Engineering Group, University of Cantabria, Av. De Los Castros s/n, Santander E39005, Spain

ABSTRACT

Nowadays, polymers like hydrogels that respond to well defined stimuli, have a particular interest in fields like optoelectronics, biotechnology, materials, etc. One of this polymers is the NIPAAm, that posses thermo optics properties. This work is oriented to the design and implementation of a temperature sensor using fiber optics and having as sensitive part a sintetized hydrogel of polyNIPAAm and MeOXA of reversible thermosensible characteristics. For this setup we use a glass ampoule which is coupled to two pieces of plastic, inside the ampoule it is placed the hydrogel. The working principle relies in the turbidity changes in a well known temperature called critical. We present the experimental results of the designed and implemented device.

Keywords: Plastical fiber optic, hydrogel, temperature sensor, light intensity, polymer, critical temperature

1. INTRODUCTION

Currently, there is a developing of a great number of optical setups to detect several physical parameters. The use of fiber optics has proved to have advantages in the construction of optical sensors and devices. By using its properties in a convenient way, practical optical sensors can be developed. Plastical optical fibers (POF) have some advantages over glass fibers in low budget sensors, such as great flexibility, large diameter and numerical aperture, hardness, easy manipulation and low cost. These advantages make its use an interesting alternative in the field of instrumentation of engineering.

This work is about the evaluation of the sensor to changes in the temperature when it is submerged in liquids. A laser light is transported by the fiber optic until it reaches the sensitive part where the hydrogel will manifest changes in its thermo optics properties, these device has an approximate working range from 35°C to 50°C.

2. THE POLYMER

We have started our work some time ago by studying first, the characteristics and possible use of the polymer N-isopropylacrylamide (NIPAAm). In Fig. 1, it is shown the simple setup we have used. For all the work done, we have used as light source a diode laser OS-8525, as a detector a high sensitive photodiode CL-6604 and our primary data acquisition system was a Science Workshop 750 Interface and later a National Instruments PCI-6023E.

The software used was Data Studio from PASCO and for the final part, MATLAB because of its programming facilities and easy to use graphical user interface tools.

*rcello@pucp.edu.pe; phone 51 1 6262000 - 4115; fax 51 1 6262085
Temperature fiber optic sensor using a thermosensible hydrogel

Coello, Rafael; Arcos, Mariella; Chana, Denise; Contreras, Kevin; Baldwin, Guillermo; Rueda, Juan Carlos; Lomer, Mauro

Laboratorio de Optica, Departamento de Ciencias, Pontificia Universidad Catolica del Peru, Lima 32, Peru

Proceedings of SPIE - The International Society for Optical Engineering

Proc SPIE Int Soc Opt Eng v 7065

Reflection, Scattering, and Diffraction from Surfaces

2008

p 706517

English

0277-786X

PSISDG

Conference article (CA)

Reflection, Scattering, and Diffraction from Surfaces

Aug 11-12 2008

San Diego, CA, United States

74148

The International Society for Optical Engineering (SPIE)

SPIE, Bellingham WA, WA 98227-0010, United States

Nowadays, polymers like hydrogels that respond to well-defined stimuli, have a particular interest in fields like optoelectronics, biotechnology, materials, etc. One of this polymers is the NIPAAm, that posses thermo optics properties. This work is oriented to the design and implementation of a temperature sensor using fiber optics and having as sensitive
part a sintetized hydrogel of polyNIPAAM and MeOXA of reversible thermosensible characteristics. For this setup we use a glass ampoule which is coupled to two pieces of plastic, inside the ampoule it is placed the hydrogel. The working principle relies in the turbidity changes in a well known temperature called critical. We present the experimental results of the designed and implemented device.

Number of references: 12

Ei main heading: Hydrogels

Uncontrolled terms: Critical temperature - Light intensity - Plastical fiber optic - In fields - Turbidity changes - Working principles - Glass ampoules - Set-ups

DOI: 10.1117/12.798916

Database: Compendex

Compilation and indexing terms, © 2008 Elsevier Inc.
The typical response of this polymer for the configuration in transmission used above is shown in Fig. 2.

An optical temperature relay was one first application to be developed by taking profit of the critical temperature that is always the same and the fact that the response of the polymer presents a convenient hysteresis of about half a degree when is heating or cooling.

Several configurations were tested, in series, in parallel, by transmission and reflection. In the following figure is shown the setup for a parallel configuration.

An alarm system was implemented using this optical relay that fired a contactor that started or stopped an ac induction motor, when the optical setup was immersed in a small tank and was subject to temperature changes.
3. SYNTHESES OF THE HYDROGEL

This hydrogel is based on the radical copolymerization of N-isopropylacrylamide (NIPAAm) and bis-macromonomers of 2-methyl-2-oxazoline (MeOXA). The hydrogels show conformational transitions at a defined temperature, which is a function of the molar ratio NIPAAm/MeOXA inside of the hydrogel, which experiments a quick and reversible phase transition when its hydrogen chains are below their critical temperature, passing from a swelling to a shrinking state.

The hydrogels are polymeric solids specially suited to form gels thanks to their large structure chains, the flexibility of these chains make possible their deformation to allow the introduction of solvent molecules inside their tridimensional structure.

They swell in water considerable increasing their volume until reaching a chemical-physical balance, without loosing their shape. The swelling state is the result of the balance between dispersive and cohesive intermolecular strengths that acts in the hydrated chains.

The hydrogels can also present a swelling behavior dependent of the external medium. Some of the factors that affect the swelling of this type of hydrogels are the pH, ionic strength, temperature and electromagnetic radiation, mechanical tension, light, pression, etc. This phenomenon has fueled the developing of technological applications in the fields of chemistry, medicin, environment, agriculture, etc

As the hydrogel optical transmission response is different in comparison to the polymer alone, instead of making a simple optical switch and in spite of the non linear response, we have proposed its use as a temperature sensor in a specific range.
4. EXPERIMENTAL SETUP

In this work, we present the design and construction of a sensor based in a plastical optical fiber of PMMA, 2mm of diameter and core and cladding refraction index of 1.492 and 1.402 respectively, having a numerical aperture of 0.5.

We also use a cylindrical glass ampoule with a length of 65mm and a diameter of 3mm, coupled in the extremes to two pieces of plastical optical fiber, one of these fibers is coupled to a laser diode of 660nm and the other extreme to a PIN photodiode. Inside the ampoule is placed the hydrogel in a volume of 35ml as it is shown in the following figure and photography.
5. RESULTS AND CONCLUSIONS

The experimental response, at different dates, of this setup is shown in the following figure.
For this first setup, the shape of the response, in spite of the drifting, can be used to find the respective unknown temperature.

A more simple setup is being implemented using the reflection of the light in the fiber instead of the transmission, resulting in a more compact design as we use a single fiber for the transmission and collection of light.

ACKNOWLEDGMENT

This work has been partially financed by the Research Academic Direction (DAI) and by the Physics Section of the Pontificia Universidad Catolica del Peru.

REFERENCES