How do investors value firms’ decision on obtaining an eco-label?

Evidence from the fishing industry.

Manuel Luna, Myriam García-Olalla and Jose Luis Fernández Sanchez
Business Administration Department
University of Cantabria

ABSTRACT

In a context of a pressing need for more sustainable practices, the fishing industry still has doubts about whether the benefits resulting from adopting them outweigh the associated costs. With the aim of providing insights to answer that question, this study presents an analysis of the so-called “it pays to be green” hypothesis by measuring the stock market reaction to the public announcements of compliance with voluntary environmental standards. To this end, an event study has been carried out to investigate whether the announcement that a seafood company has been certificated by the Marine Stewardship Council Chain of Custody standard influences its shareholders’ decisions and, therefore, the company’s market value. Results show positive average abnormal returns following that event, which are greater in the case of those companies with larger size or lower profitability.

KEYWORDS

Food industry; Fisheries; Eco-label; Eco-labelling; Event studies; MSC

INTRODUCTION

The unprecedented growth that the demand for fish products has experienced in the past decades resulted in benefits to both the companies and the society at large. However, this also led to unsustainable development patterns such as, for example, over-fishing and destructive
fishing practices that cause a more rapid depletion of marine resources. In recent years, governmental and nongovernmental organizations have implemented different policies and tools to encourage companies to implement environmental management practices (Nikolaou et al., 2013), such as: (i) market-based instruments (e.g., environmental taxes, subsidies, and tradable permits), (ii) command and control instruments and (iii) some voluntary tools (e.g., environmental management systems). Furthermore, the growing consumer concern about the origin of products and their environmental impact has played a critical role in influencing the producers’ decision to adopt sustainable practices (Jackson, 2005; Tukker et al, 2010). All this increased the focus on the sustainability of the seafood industry but, at the same time, it made clear the need for procedures to eliminate the confusing and asymmetric information about the environmental impact of products (King et al., 2005).

In this context, a series of voluntary programs for eco-labels on seafood products have emerged to contribute to the health of the world’s oceans by recognizing and rewarding sustainable fishing practices (Gudmundsson and Wessells, 2000). The leading organization promoting the use of these voluntary tools, in terms of brand recognition and number of products certified, is the Marine Stewardship Council (Roheim et al., 2011; Stemle et al., 2016). This nongovernmental organization provides since 1997 two certification programs in which a team of independent experts (third-party audit) determines whether a fishery or a supply chain company can be certified according to the MSC’s Fisheries or Chain of Custody standards, respectively (Cummins, 2004). In particular, certification to the MSC Chain of Custody Standard not only guarantees consumers that any product bearing the MSC eco-label (i.e., the blue fish label) can be traced back to a fishery that meets the MSC Fisheries Standard, but it also ensures that those products are identifiable along the seafood supply chain, adequately managed and clearly separated from non-certified products.
The work of the MSC reflects the increasing importance of NGOs as stakeholders in fisheries management in the entire production cycle, engaging with fishers, processors, wholesalers, retailers, and consumers (Potts and Haward, 2007). However, the requirements of these organizations as part of their certification processes also implies more complex and costly production processes, which sometimes hampers the wide-scale adoption of these initiatives (Roheim, 2008; Pérez-Ramírez et al., 2012; 2015). Furthermore, there are social, regulatory, and governance issues that directly affect the effectiveness of these schemes (Symes, 2000). For those reasons, the question as to whether voluntary activities of a firm to protect the natural environment or to comply with environmental standards are economically beneficial to it, also known as the “it pays to be green” hypothesis, has been of vital interest for corporate management in recent times (Oberndorfer et al., 2013).

Regarding the economic effects of eco-labels and certifications of seafood products, many studies have already proven their capacity to generate some economic opportunities that may extend these practices, adding value to seafood products and creating a market advantage over non-certified products by increasing the customers’ willingness to pay (Bronnmann and Asche, 2017; Zander and Feucht, 2018). Particularly, the MSC standards have repeatedly proven to be a source of environmental, social, and economic effects, as reviewed by Arton et al. (2018). In this respect, several researchers have quantified the power of the MSC certifications to give rise to price premiums in the retail market (Roheim et al., 2011; Wakamatsu, 2014; Asche and Bronnmann 2017). Moreover, although there was not much research on whether the premium is transmitted throughout the fishing industry, new studies have shown evidence that it is actually passed back, such us in the Swedish Baltic Sea cod fishery (Blomquist et al., 2020) or in the Spanish octopus market (Fernandez Sanchez, et al. 2020)

On the other hand, the judgement of the financial markets about the current and future costs and benefits of the decision to adopt a specific environmental standard is also crucial for listed
companies. In this respect, several researchers have found different factors by which corporate environmental policies and actions can influence positively on firms’ financial performance. First, it indicates that the company has a long-term vision, anticipates market expectations, and creates sustainable value for the society, all of which could be positively valued by the financial markets (Prieto-Sandoval et al., 2016). Furthermore, different studies have found that eco-labeling points to some community empowerment and reputational aspects (Melnyk et al., 2003; Peng and Lin, 2008; Carlson and Palmer, 2016). This could lead to an increased market share and to better firm performance even in difficult situations, such as an economic crisis (Jacobs et al., 2010). However, while in the last years some studies have analysed the financial market’s reaction to the implementation of different environmental certifications (Jacobs et al., 2010; Paulraj and de Jong, 2011; Sebastianelli et al., 2015), it has not been analysed in the seafood industry despite its economic importance to the world.

Therefore, the main aim of this study is to test the “it pays to be green” hypothesis in the industry of seafood products by measuring the stock market reaction associated with public announcements of compliance with a voluntary environmental standard. To this end, an event study has been carried out to investigate whether the announcement that a listed company is certificated by the MSC Chain of Custody standard influence its shareholders’ decisions and, therefore, the company’s market value. The Event Study methodology – popularized by Fama et al. (1969) – was designed to determine how information about an event is reflected into any extraordinary/abnormal return for the company’s shareholders (MacKinlay, 1997). In this regard, although according to the Efficient Market Hypothesis (EMH) security prices immediately reflect all available relevant information (Fama, 1970), the financial markets, which are not fully efficient, have lags in the processing of relevant information – i.e., the expected costs and benefits – causing abnormal returns that are here analyzed. Thus, stock prices will reflect all available information regarding the compliance with environmental standards (Pham et al., 2019). These methods have been extensively used in corporate finance with very useful results;
however, there is a research gap regarding how eco-certifications affect a company’s market valuation. In this way, some event studies, such as those of Flammer (2013) or Clacher and Hagendorff (2012), found that shareholders react positively to the announcement of eco-friendly or CSR initiatives in different industries, but only a few studies used that methodology to investigate the effect of following a specific standard, such as the ISO 14001 (Feng et al., 2020; Noh, 2019).

The event study methodology has the advantage of avoiding the need to analyze accounting-based measures of profit related to this event, which may be subject to manipulation by insiders, by focusing the analysis on stock prices (McWilliams and Siegel, 1997). To do so, it requires the utilization of a benchmark index of the fishing industry, which is currently missing, so we have created one by grouping the stock prices of nearly 300 publicly traded companies and adjusting them based on their market capitalization. In addition, it has also made it possible to analyze the influence of different indicators of the companies’ situation that may enhance or moderate the effect of the decision under study, such as the previous year’s profitability, the company size, or the sales.

The present manuscript is structured as follows. After this introduction, Section 2 introduces the methodologies and techniques employed for this analysis. Then, Section 3 presents the main findings and analyses of their robustness. Finally, Section 4 contains the discussion and main conclusions of the work carried out and the results achieved.

MATERIALS AND METHODS

With the aim of addressing the main objectives of the present research question, already explained in section 1, we have tested the following two hypotheses:

H1: The stock market reacts positively to the obtainment of the MSC eco-label in the industry of seafood products.
H2: *This market reaction is influenced by the economic and financial activity of the companies.*

For this purpose, we first applied an event study methodology over an appropriate sample of firms from the fishing industry, and then we carried out a cross sectional analysis.

DATA

The sampling frame of the present study is the Datastream database of Eikon (Thomson Reuters), which has been used to collect the financial information of the industries of interest. The specific search performed was focused on companies in seven industries of the Thomson Reuters Business Classification (TRBC), with the extensive requirement that ensures the presence of the terms “fish,” “seafood,” or “marine” in the company description.

As can be seen in Table 1, this search resulted in a list of 435 companies in the fishing industry. These companies are all involved in the supply chain of seafood products at various levels of operation; although, they are unequally distributed by their main activities.

--- Table 1 ----

After that, we accessed the public list posted by the Marine Stewardship Council (MSC), which contains the companies certified by the MSC Chain of Custody standard and their certification date. Within this sample, we have found 102 companies that have been certificated by that standard. Among these companies, we have selected those that were publicly traded in the financial markets, publish their daily prices around the certification date, and present all the required information.

These requirements are met by a total of 58 companies that adopted the certification between 2006 and 2019, which constitute the sample of our study. Table 2 shows the distribution of the companies by geographical regions, with more than half of the companies, both in the database and in the final sample, drawn from Asia.
In addition to the daily prices and the industry, the sample has been enriched with information at the company level, such as the market cap (USD) and the yearly evolution of some economic variables such as the return on assets, the return on equity and the company sales (from Orbis, Bureau Van Dijk, database). Table 3 shows the distribution of those variables.

EVENT-STUDY METHODOLOGY

To analyze the investors’ response to the decision of adopting the MSC Chain of Custody standard, this paper applies the event study methodology.

The event study methodology has been used mainly in the field of corporate finance, but it has been extended to other disciplines, such as management. It examines the stock market reaction to the reception of new information, since it might change the expected value of the affected firms and thereby cause abnormal returns (MacKinlay, 1997). In this way, this methodology avoids the need to analyze accounting-based measures of profit, which may be subject to manipulation by insiders, by focusing the analysis on stock prices (McWilliams and Siegel, 1997).

This technique is based on the efficient market hypothesis (EMH), which assumes that the market’s reaction is caused by a change in investors’ expectations (e.g., when new measures are announced and not only when those measures are implemented). The underlying idea is that changes in the market value of companies around an event date can be interpreted as the net present value of expected future costs and benefits associated with that event. In practice, markets are not fully efficient so they have lags in the processing of relevant information (i.e., the expected costs and benefits), causing abnormal returns that are analyzed here.

To analyze the change in stock prices, the Event Study methodology estimates abnormal returns as the deviation of the actual return from the predicted or expected return according to the
Market Model proposed by Sharpe (1963). Implicitly, the expected return is the one that would have occurred in the absence of the news. In this regard, if a positive reaction of share prices is found to be associated with the certification by the MSC Standard, it will mean that investors consider the certification to be valuable. Otherwise, if investors consider that the future benefits do not outweigh the costs, the company’s market valuation will drop (i.e., the abnormal returns will be negative).

First, this model takes into account the specific security’s past performance and its sensitivity to general market movements reflected by a stock market index\(^1\), represented by a global, regional, or local equity index, which is used as a benchmark. In this way, with the aim of determining the impact of the analyzed events, we have estimated the market model for each firm’s returns compared to the market portfolio return represented by a benchmark index of the fisheries sector that we have developed.

\[
R_{it} = \alpha_i + \beta_i R_{mt} + \epsilon_{it}, \quad t = -240, \ldots, -21 \tag{1}
\]

\[
E(R_i) = \alpha_i + \beta_i E(R_{mt}) \tag{2}
\]

where \(R_{it}\) is the return of the firm \(i\) on day \(t\). \(R_{mt}\) is the return on a representative market portfolio, \(\alpha\) and \(\beta\) are the model parameters and \(\epsilon_{it}\) is the error term, with \(E(\epsilon_{it}) = 0\). \(E(R_i)\) is the return that the market model estimates for a certain firm on a certain date based on the market model.

Then, we calculate the abnormal returns (AR) as established above, which are assumed to reflect the stock market’s reaction to the arrival of new information. Positive values of AR imply that

\(^1\) Different approaches have been developed to explain how stocks move together. For example, multi-factor models (Fama and French, 1993) attempt to capture some of the non-market influences that account for common movement in stock prices beyond that accounted for by the market index itself. However, the Market Model is the most frequently used method employed in the literature for computing abnormal returns MacKinlay (1997), Clacher and Hagendorff (2012) or Feng et al (2018) are some examples.
the stock prices “abnormally” increase following the event, and negative values indicate that the
stock prices decrease. Next, we compute the average abnormal return (AAR) across all firms
from our sample

\[AR_{it} = R_{it}^* - E(R_{it}) \] (3)

\[\text{AAR}_t = \frac{1}{N} \sum_{i=1}^{N} AR_{it} \] (4)

where \(R_{it}^* \) is the real return of the firm \(i \) on day \(t \), and \(N \) is the number of firms.

With the aim of assessing the price reaction over a longer period of time, we sum all the AR over
an event window \((t_1, t_2)\) around the event date in order to get the cumulative abnormal return
(CAR). Lastly, the average abnormal return across the event window is aggregated (CAAR).

\[CAR_i (t_1, t_2) = \sum_{t=t_1}^{t_2} AR_{it} \] (5)

\[CAAR (t_1, t_2) = \frac{1}{N} \sum_{i=1}^{N} CAR_i \] (6)

In the present work, the model is estimated from the daily returns, calculated according to the
closing prices of each security listed on the Thomson Eikon Datastream. For each security, we
have estimated the expected returns over a period of 240 days to 21 days before the reception
of the new information – event date \((t = 0)\) – to diminish the influence of confounding events.
Therefore, the “estimation period” is \((-240, -21)\).

Then, we estimate the cumulative abnormal returns (CAR) over different event windows around
the event date \((t = 0)\). The “event window” is defined as the entire length of time over which
one may look for a stock price reaction to the news. In the present work, we examine the return
during an event window of 20 days before to 20 days after the event date \((-20, +20)\) to determine
whether these returns were abnormally positive or negative. Within this event window, we
analyze more windows of different lengths (McWilliams and Siegel, 1997; Clacher and
Hagendorff, 2012; Garcia-Olalla and Luna, 2020). They must be short enough to avoid the problems of overlapping events and long enough to capture the effect of the analyzed event. The shorter one being 1 day after the event (0, +1) while the longest one covering 20 days (0, +20) to include the case in which the investors’ reaction does not take place immediately but is prolonged for several days. It is also necessary to consider the possibility of the market reacting before the event to possible information or rumors, and not only when the certification comes into force. In this respect, we have considered a period before the event to compute all of the market reaction. We focused on four more windows around the event date, (-1, +1), (-3, +3), (-7, +7) and (-20, +20). We subsequently calculated the cumulative average abnormal returns (CAAR) as the mean of our estimates for each of the windows.

To verify the statistical significance of the CAAR, we have first applied two parametric tests based on normalized abnormal returns: The cross-sectional t-test (Brown and Warner, 1980;1985) and Patell’s Z-Test (Patell, 1976). On the other hand, some non-parametric tests can be used as a complement to the previous ones, since they are based on medians and do require distributional assumptions. In this case, we have applied the Corrado rank test and the sign test, both calculated as described in Corrado and Zivney (1992). However, it should be noted that the application of non-parametric tests to a multiple day analysis of CAAR has given rise to some problems that caused researchers to normally rely more on parametric tests (Kolary and Pynnonen, 2011).

Lastly, since the developed methodology requires the use of a benchmark global/regional equity index that represents a market portfolio to estimate each firm’s abnormal returns, a benchmark index of the fisheries sector has been created. This index groups the stock prices of all the above-mentioned publicly traded companies and adjusts them based on their market capitalization. Therefore, this index is formed by 295 companies that act as a representation of this sector globally throughout the last 15 years (Fig. 1).
CROSS-SECTIONAL ANALYSIS

To test the second hypothesis concerning the effect of some variables that may enhance or moderate the investors’ reaction, a cross sectional analysis has been developed. From our point of view, this analysis constitutes the most appropriated method since it not only looks for the variables that may be relevant for explaining the abnormal returns, but it also quantifies their average impact.

In this way, hidden areas of strength and weakness in the sector can be exposed throughout this analysis. Therefore, it could both help companies to understand the potential effect of some decisions and support investors to understand the main aspects that impact the studied variable in order to make good investment decisions.

Regarding the explanatory variables, it is usually recommended to base the assumptions taken to analyze the effect of different variables on previous theory or practical experience. For that reason, we based this process on previous knowledge about event studies in different sectors (Black and Khanna, 2007; Larcker et al., 2011; Nguyen et al., 2015; Feng et al., 2018) and on the effects of eco-labels in the commercial results of fishing companies. This led us to select four variables at the company level, which represent their economic and financial situation, and two variables referring to the main activity and the country of domicile of each company as potential determinants of the CAR (Table 4).

Lastly, the OLS technique in R has been used to test the hypothesis on the effect of any of those independent variables included in the dataset on the dependent ones. These were the windows where there was a significant and robust effect both before and after the event in order to determine the variables influencing the reaction. Therefore, the initially proposed model was
the following:

\[CAR_i = \alpha + \beta_1 \cdot \text{MARKETCAP}_i + \beta_2 \cdot \text{ROA}_i + \beta_3 \cdot \text{ROE}_i + \beta_4 \cdot \text{SALES}_i + \beta_5 \cdot \text{ACTIVITY}_i + \beta_6 \cdot \text{COUNTRY}_i + \epsilon_i \]

RESULTS

This section presents the results obtained in the analysis of the event of gaining an MSC Chain of Custody certification in the fishing industry. To this end, it presents the main findings of the event study carried out, the analysis developed to verify these findings, and the process followed to look for variables at sectoral or company level that may moderate or enhance them.

EVENT ANALYSIS

The analysis of the market reaction to the MSC Chain of Custody certification begins with the study of the cumulative average abnormal return (CAAR) in different windows around the event dates.

As explained in section 1, this reaction could be understood as the result of the evaluation made by the market to the expected benefits and cost of obtaining this certification. A positive reaction reflects, on average, investor confidence that the decision to adopt those environmental practices improves the reputation of the company, adds value to the fishing products or results in any other advantage for the company over their competitors. Otherwise, the investor expects that these benefits would not offset the costs of this decision.

Regarding the analysis of the statistical significance of that reaction, the tables below present the results according to Patell’s Z-test. Furthermore, given that a non-stationarity condition generally biases against finding a result associated with an event (de Konchitchki and O’Leary, 2011), we have confirmed the stationarity of the data sample using the Dickey-Fuller and Phillipps-Perron tests (Perron, 1988; Said and Dickey, 1984).
In this regard, the analysis carried out has proven that the market reacts significantly to each of the selected windows. This is an indication of how important this event is for fishing companies. Furthermore, the average abnormal market reaction is positive for all the windows considered in the study, which means that the shareholders usually made a positive assessment of a firm obtaining this certification of environmental sustainability. This reaction does not imply that every company in the sample has experienced a positive reaction from their shareholders, but it is possible to state that, on average, there was a significantly positive effect, as can be seen in Figure 2.

---- Fig. 2 ----

With respect to the full sample, the analysis shows that shareholders have obtained increasing positive returns in the windows between 0 and 20 days after the announcement of the certification (Table 5a). In this way, it is possible to observe that the certification effect started off as a significant and positive abnormal return around 1.08% in the first week after the event and grew to its maximum market reaction 20 days after the event, with a return of 2.64%. In addition, if we eliminate some members of the sample (namely outliers) that present abnormal returns that do not follow the common patterns, we also observe positive abnormal returns, although to a lesser extent. In this way, the results obtained in this new analysis not only confirm the previously observed effects, but they also enhance the robustness of the present study.

---- Table 5a ----

On the other hand, as sometimes investors had advance information about the decisions taken by the company, we have also analyzed the market reaction when a period prior to the event in the study is included (Table 5b). Once again, significant abnormal returns are observed, especially in the long window of 20 days before and after the certification date, in which a return

2 Seven companies of the sample were eliminated because they presented abnormal returns that were out the interval \([E(AR_{it}) ± O(AR_{it})]\)
of 3.48% has been registered. These results are again confirmed for the sample without outliers, with a return about 1.83%.

---- Table 5b ----

Regarding the possibility of obtaining different results for each company’s activity or TRBC code inside the fishing industry, we have repeated the event analysis for a reduced sample of even more similar companies. This sample was constituted by the Food Processing (NEC) and the Seafood Product Preparation & Packaging companies, thus making a sample of 45 companies (41 if we eliminate the outliers). In this way, we re-test the results for the companies that constitute the main group of the sample, confirming again that, as shown in Tables 6a, the market reacts with positive and significant returns, which account for 1.29% in the largest window after the event.

---- Table 6a ----

Moreover, when we considered that the investors had advance information about the decisions taken by the company, a reaction of about 2.31% in the 7-day window around the event, or 2.67% if the outliers are eliminated, was observed for the reduced sample (Table 6b).

---- Table 6b ----

Based on those results, as will be discussed in section 5, it can be confirmed that the announcement of MSC Chain of Custody certification of a supply chain company is more likely to be positively received by investors, since the market reaction is significantly positive. This could point toward the existence of other benefits (whether commercial, reputational, or any other), which had not been quantified, on the decision to follow this standard.

ROBUSTNESS CHECK
With respect to the robustness of the main findings, the overall results have been tested in order to prove that they are not the result of weaknesses in data or methodology and they are indeed driven by the event analyzed.

In this regard, unexpected or exceptional results in specific companies/dates could be attributed to other events or sampling errors. For that reason, the present study requires an analysis of the presence of confounding events, certain biases, or outliers that could lead to misinterpretations.

Regarding confounding events, it is necessary to check the existence of other announcements related to a specific date or with one or more companies of the sample, such as dividends payments, mergers and acquisitions (M&A), or the release of new information about the company. To avoid this possibility and to isolate the event of interest from other events that may substantially affect stock prices, previous studies have already recommended excluding some dates or companies from the sample (Foster, 1980; Pham et al., 2019). In this case, we have looked for other announcements at the company level, thus confirming that none have been affected by dividends announcements or payoffs around the analyzed dates. Furthermore, the events analyzed occur on a different date for each company, so the existence of other sectoral news and circumstances on the same date is far less likely. All this almost excludes any possible abnormal returns originated by other events concerning the dates or the industry.

In addition, while most of the companies present small daily variations, it is possible to find some observations that exhibit an extremely different behavior. Those atypical observations that are outside of the distribution and therefore without context value are called outliers, and the average is very sensitive to them. In this way, the presence of outliers has been highlighted in different studies as a disruptive influence on the accuracy and the understanding of most models (Yohai, 1987). Therefore, this points to a need for a proper treatment of the outliers with the aim of obtaining a better perspective regarding the results. However, in event studies, simply excluding outliers from the analysis could sometimes be negative because many of the outliers
comprise the event-related sample and carry important information for the research (Sorokina et al., 2013). For those reasons, as shown in the previous subsection, the analysis of all the windows has been developed both for the total sample and for the sample without outliers. Tables 5 and 6 show that this analysis has not only confirmed the findings of the study but has also contributed to observe a market reaction in additional windows.

On the other hand, although the literature on this subject is not fully conclusive, selection biases could lead to erroneous results. In this regard, the study of Ahern (2009), showed that, in contrast with the results of Brown and Warner (1985), the underlying characteristics of firms selected for an event study may lead to biased predictions. Thus, the one-to-one matching method (Noh, 2019; Feng et al, 2020) has been applied to assess self-selection bias risk by pairing each sample firm (MSC certified firm) with a very similar control firm (Non-MSC certified) in terms of size, origin, and stock price performance. The new sample abnormal returns during the event period were not significant, which makes the presence of self-selection biases highly unlikely. In the same way, we conducted two placebo tests, both twenty days before and after the estimation window - (-40, -20) and (+20, +40) respectively - reaching non-significant coefficients that, furthermore, have opposing +/- signs. Lastly, the results of the initial analysis were confirmed again by replacing the previous benchmark index with an international portfolio, the MSCI World Index. In this way, all the results obtained were consistent with our previous analysis and our conclusions.

In this way, the checks carried out tested the reliability of the results and confirmed that our main findings are robust.

CROSS SECTIONAL ANALYSIS

Once it was determined that investors had a positive reaction to the MSC certification, we investigated the existence of different indicators of the situation of the company that may enhance or moderate that reaction.
With this aim, we have carried out a cross sectional analysis, taking the market reaction in the window (-20, +20) as an independent variable, which not only was significant according to the parametric tests but also presented the highest results. Prior to introducing them as regressors in the model, we standardized the economic-financial variables (i.e., we centered them [subtracting their mean] and divided them by their standard deviations). Furthermore, we have confirmed the consistency of the results using the method developed by Zeileis (2004).

First of all, the size of the company, measured by the market capitalization, has been included as a control variable that is expected to have a positive effect on the investor reaction. The size of the enterprises is a common variable in many studies due to its importance for all aspects regarding company activity. Furthermore, in the present case, the increase in costs and complexity that organic production usually implies could have a larger impact on the small companies’ profitability in the short term (Miret-Pastor et al. 2014). The results confirm the expectations, showing a more positive average abnormal return and, therefore, a more positive investor expectation regarding the certification effect the larger a company is. Therefore, “large” companies are expected to obtain more profit from these types of certifications than other companies.

In addition, the economic/financial situation of a company can also have a direct effect on the investors’ assessment of some decisions. As performance measures, we take into account both financial profitability (ROE) and economic profitability (ROA), assuming a more positive reaction to the eco-label for the less profitable firms. In the same way, we assume that companies with a lower level of business, measured by the amount of sales, value the expected benefits of certification more. As shown in Table 7, all three variables have a negative relation with the abnormal returns presented after obtaining an MSC certification. This finding confirms that the investor assesses obtaining an eco-label in companies with less profitability or sales to be better, since it could be a source of profits.
Regarding the variables that refer to the main activity and the country of domicile of each company, there was no evidence of a statistically significant effect.

--- Table 7 ---

For this reason, they were not included in the final estimated model, which is as follows:

\[
CAR_i = 0.163 + 0.410 \cdot \text{MARKETCAP}_i - 0.240 \cdot \text{ROA}_i - 0.226 \cdot \text{ROE}_i - 0.223 \cdot \text{SALES}_i + \varepsilon_i
\]

DISCUSSION AND CONCLUSIONS

Although a number of years have gone by since economic growth was at its best, society is still suffering from the consequences of the unsustainable development patterns in many industries. In particular, in the fishing industry, the importance of some aspects, such as sea pollution or the depletion of marine natural resources, make the negative environmental effects even more problematic and urgent. However, the fact that in this industry producers already face many challenges to ensure their companies’ profitability is hampering the wide-scale adoption of more sustainable practices.

To overcome this problem, an increasing number of organizations, both public and private, are actively working toward sustainable change with new production models, policies, and even legislation (FAO, 2018). Nevertheless, to succeed in this challenge and make the added costs and risks worthwhile, stakeholders, and especially consumers, have to be the real drivers of that shift (Jackson, 2005; Tukker et al, 2010). With this idea in mind, environmental certifications and eco-labels were created to provide market-based incentives for sustainable practices (UN, 2015) and help producers to communicate the adoption of those practices to consumers through reliable and credible labels (Asche et al., 2015). According to different studies (Roheim et al., 2011; Wakamatsu, 2014; Bronnmann and Asche, 2017; Asche and Bronnmann 2017), those certifications are actually resulting in some commercial benefits, such as a boost to the sales or margins of a company; however, they could not be sufficient to outweigh their added costs.
In this regard, the present work constitutes an important contribution to the study of the “it pays to be green” hypothesis, measuring the stock market reaction associated with publicly announcements of compliance with a voluntary environmental standard, the MSC Chain of Custody standard. This standard guarantees both that any product bearing the MSC eco-label (i.e., the blue fish label) can be traced back to a fishery that meets the MSC Fisheries Standard and that those products are identifiable along the seafood supply chain, adequately managed and clearly separated from non-certified products. With this aim, a sample of 58 fishing companies, publicly traded and certified by the MSC Chain of Custody standard, has been analyzed in pursuit of abnormal returns related to the certification announcement.

Regarding this objective, although a further period of time could elapse from the certification date to the collection of other benefits, such as the price premiums, the investors’ reaction is usually observed in a few days or even in a few hours in highly liquid and almost perfect markets (Marshall et al, 2019). For that reason, we have analyzed windows between 1 and 20 days both before and after the date when this certification is obtained and announced. In this respect, the event study carried out has shown the existence of positive abnormal returns in the days around the event date. Furthermore, these findings have been strengthened by a robustness analysis, which has discarded the possibility that this conclusion responds to only some unexpected and exceptional results in specific companies (outliers) that can be attributed to confounding events or sampling errors. Therefore, we can state with certainty that investors respond positively to sustainable schemes in fisheries, producing a gain for the companies in the financial markets, which confirms our first hypothesis.

In addition, we have also analyzed through a cross sectional analysis how a company’s situation may influence the market reaction to obtaining the certification. Results show that the positive market reaction is intensified for those with a greater presence in the market (i.e., with a greater market capitalization). However, a negative relationship between the market reaction and the
performance of the company was observed. In this way, we can conclude that the shareholders of fishing companies consider the advantages of certification to be especially positive for the companies in a more complex situation, with lower profitability ratios and lower sales value. Regarding other variables, such as the country of domicile and the main activity of the company, they have not shown any significant results, probably due to the unbalanced sample.

All of this allowed us to reach a number of theoretical and practical conclusions. Firstly, these findings are in line with the previous literature using event study methodology, which has already proven the fact that important events usually show cumulative abnormal returns over different windows around the announcement date (McWilliams and Siegel, 1997). Similarly, they also coincide with the main results of other event studies related to CSR or sustainable practices (Flammer, 2013; Noh, 2019; Feng et al., 2020). In this way, this study fills a research gap and serves as the basis for future developments in understanding the effect of key decisions in the stock value of fishing companies. Furthermore, the existence of abnormal returns that persist after a particular type of event led us to the conclusion that the seafood market is less efficient than those in which they do not generally last as long (Busse and Green, 2000).

On the other hand, the decision to adopt a standard of sustainable behavior has proven to be a strategic decision for seafood production companies with effects in the performance of the companies at many levels. In this respect, the evidence found in this study suggests that, despite the doubts about the existence of commercial benefits, obtaining an eco-label will be wealth-increasing for the shareholders. This allows us to conclude that such a decision contributes to improve the economic-financial situation of companies, especially for those in a poor economic situation. In this way, this decision could reduce the conflicts of interest between managers and shareholders by aligning their objectives.

Lastly, the results obtained not only lead to some important practical conclusions for the fishing industry, but they also point toward some recommendations for the certifying organizations.
These results provide tangible examples and statistics in support of the utility of these type of certifications. These facts could be included in the set of certifying organizations’ reasons to support the wide-scale adoption of these certifications, since they prove that the investors react positively to the decision to allow a third party to evaluate and control the implementation of smart, safe, and sustainable production practices. Accordingly, producers should pay special attention to internal and external communication, which are traditionally ignored in sustainable agriculture management (Gunarathne and Lee, 2020).
REFERENCES

UN. 2015. Transforming our world: the 2030 Agenda for Sustainable Development. New York, USA.

Table 1. Number of companies by main activity

<table>
<thead>
<tr>
<th>TRBC Sector</th>
<th>Database</th>
<th>MSC certified</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aquaculture*</td>
<td>84</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Commercial Fishing</td>
<td>41</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Fishing & Farming (NEC)</td>
<td>56</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Fishing & Farming Wholesale</td>
<td>23</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Food Processing (NEC)</td>
<td>100</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Seafood Product Preparation & Packaging</td>
<td>117</td>
<td>62</td>
<td>37</td>
</tr>
<tr>
<td>Seafood Product Preparation</td>
<td>14</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

*Aquaculture Companies cannot be certified by MSC.

Table 2. Number of companies by continent

<table>
<thead>
<tr>
<th>Continent</th>
<th>Total of companies</th>
<th>MSC certified</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asia</td>
<td>226</td>
<td>64</td>
<td>41</td>
</tr>
<tr>
<td>Europe</td>
<td>125</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>America</td>
<td>55</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Africa</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Oceania</td>
<td>15</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3. Descriptive statistics for the sample

<table>
<thead>
<tr>
<th>Market Cap (million US$)</th>
<th>Sales (thousand US$)</th>
<th>ROA (%)</th>
<th>ROE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>0.15</td>
<td>-26.5%</td>
<td>-54.5%</td>
</tr>
<tr>
<td>1st Qu.</td>
<td>21.68</td>
<td>2.17%</td>
<td>2.67%</td>
</tr>
<tr>
<td>Median</td>
<td>94.91</td>
<td>5.70%</td>
<td>6.59%</td>
</tr>
<tr>
<td>Mean</td>
<td>875.80</td>
<td>5.90%</td>
<td>8.65%</td>
</tr>
<tr>
<td>3rd Qu.</td>
<td>521.60</td>
<td>8.61%</td>
<td>15.6%</td>
</tr>
<tr>
<td>Max.</td>
<td>12,910.00</td>
<td>34.0%</td>
<td>96.5%</td>
</tr>
<tr>
<td>Variable</td>
<td>Definition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR</td>
<td>Cumulative abnormal return over the (-20, +20) window around the event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARKETCAP</td>
<td>Total market value of the company’s shares of stock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td>Return on assets = Pre-tax profits / Total Assets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROE</td>
<td>Return on equity = Net profits / Total Equity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALES</td>
<td>Total Sales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country</td>
<td>Country of Domicile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activity</td>
<td>Main activity inside the fishing industry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5a. Stock market reaction after the event

<table>
<thead>
<tr>
<th>Event Window</th>
<th>Full Sample (N=58) CAAR (%)</th>
<th>Without outliers (N=51) CAAR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0...1)</td>
<td>0.08**</td>
<td>0.27*</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.060)</td>
</tr>
<tr>
<td>(0...3)</td>
<td>0.01***</td>
<td>0.48***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(0...7)</td>
<td>1.08***</td>
<td>0.85***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>(0...10)</td>
<td>1.64**</td>
<td>1.24*</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.061)</td>
</tr>
<tr>
<td>(0...15)</td>
<td>1.49**</td>
<td>1.25*</td>
</tr>
<tr>
<td></td>
<td>(0.017)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>(0...20)</td>
<td>2.64**</td>
<td>1.99</td>
</tr>
<tr>
<td></td>
<td>(0.042)</td>
<td>(0.145)</td>
</tr>
</tbody>
</table>

*** significant at 1%. **significant at 5%. *significant at 10%

Table 5b. Stock market reaction around the event
Table 6a. Stock market reaction after the event (Reduced sample)

<table>
<thead>
<tr>
<th>Event</th>
<th>Full Sample (N=58)</th>
<th>Without outliers (N=51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>CAAR (%)</td>
<td>CAAR (%)</td>
</tr>
<tr>
<td>(-1...1)</td>
<td>0.58 (0.887)</td>
<td>0.84 (0.829)</td>
</tr>
<tr>
<td>(-3...3)</td>
<td>1.17* (0.090)</td>
<td>1.66* (0.097)</td>
</tr>
<tr>
<td>(-7...7)</td>
<td>2.99** (0.011)</td>
<td>2.62* (0.053)</td>
</tr>
<tr>
<td>(-20...20)</td>
<td>3.48*** (0.000)</td>
<td>1.83*** (0.000)</td>
</tr>
</tbody>
</table>

*** significant at 1%. **significant at 5%. *significant at 10%

Table 6b. Stock market reaction around the event (Reduced sample)

<table>
<thead>
<tr>
<th>Event</th>
<th>Reduced Sample (N=45)</th>
<th>Without Outliers (N=41)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window</td>
<td>CAAR (%)</td>
<td>CAAR (%)</td>
</tr>
<tr>
<td>(0...1)</td>
<td>0.00*** (0.005)</td>
<td>0.20*** (0.009)</td>
</tr>
<tr>
<td>(0...3)</td>
<td>-0.53 (0.100)</td>
<td>0.18*** (0.000)</td>
</tr>
<tr>
<td>(0...7)</td>
<td>0.09*** (0.000)</td>
<td>0.20*** (0.000)</td>
</tr>
<tr>
<td>(0...10)</td>
<td>0.70*** (0.002)</td>
<td>0.82*** (0.002)</td>
</tr>
<tr>
<td>(0...15)</td>
<td>0.48*** (0.002)</td>
<td>1.21** (0.029)</td>
</tr>
<tr>
<td>(0...20)</td>
<td>1.29*** (0.004)</td>
<td>1.83** (0.031)</td>
</tr>
</tbody>
</table>

*** significant at 1%. **significant at 5%. *significant at 10%
<table>
<thead>
<tr>
<th>Event Window</th>
<th>Reduced Sample (N=45)</th>
<th>Without Outliers (N=41)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAAR (%)</td>
<td>CAAR (%)</td>
</tr>
<tr>
<td>(-1...1)</td>
<td>0.5</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>(0.650)</td>
<td>(0.892)</td>
</tr>
<tr>
<td>(-3...3)</td>
<td>0.81**</td>
<td>1.77**</td>
</tr>
<tr>
<td></td>
<td>(0.024)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>(-7...7)</td>
<td>2.31***</td>
<td>2.67***</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>(-20...20)</td>
<td>0.60***</td>
<td>1.47***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
</tbody>
</table>

*** significant at 1%. ** significant at 5%. * significant at 10%

Table 7. Determinants of CARs at the eco-label certification

<table>
<thead>
<tr>
<th>Standardized Regressors</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROE</td>
<td>-0.326***</td>
<td>-0.356***</td>
<td>-0.205**</td>
<td>-0.226**</td>
</tr>
<tr>
<td></td>
<td>(0.0004)</td>
<td>(0.0000)</td>
<td>(0.0473)</td>
<td>(0.0202)</td>
</tr>
<tr>
<td>Market Cap</td>
<td>0.258***</td>
<td>0.290***</td>
<td>0.410***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0017)</td>
<td>(0.0004)</td>
<td>(0.00001)</td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td></td>
<td></td>
<td>-0.228**</td>
<td>-0.240**</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.0309)</td>
<td>(0.0156)</td>
</tr>
<tr>
<td>Sales</td>
<td></td>
<td></td>
<td></td>
<td>-0.223***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.0086)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.163**</td>
<td>0.163**</td>
<td>0.163**</td>
<td>0.163**</td>
</tr>
<tr>
<td></td>
<td>(0.0484)</td>
<td>(0.0372)</td>
<td>(0.0300)</td>
<td>(0.0204)</td>
</tr>
<tr>
<td>R-Squared</td>
<td>0.2457</td>
<td>0.3973</td>
<td>0.4599</td>
<td>0.5425</td>
</tr>
</tbody>
</table>

*** significant at 1%. ** significant at 5%. * significant at 10%
FIGURES

Figure 1. Fisheries industry index

Figure 2. Daily Average Abnormal Returns from the certification date