Precise Measurement of the W-Boson Mass with the CDF II Detector

13 APRIL 2012

151803 (2012) PHYSICAL REVIEW LETTERS week ending 13 APRIL 2012

© 2012 American Physical Society

(CDF Collaboration)
We have measured the W-boson mass M_W using data corresponding to 2.2 fb$^{-1}$ of integrated luminosity collected in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with the CDF II detector at the Fermilab Tevatron collider. Samples consisting of 470 126 $W \to e\nu$ candidates and 624 708 $W \to \mu\nu$ candidates yield the measurement $M_W = 80.387 \pm 12_{\text{stat}} \pm 15_{\text{syst}} = 80.387 \pm 19$ MeV/c2. This is the most precise measurement of the W-boson mass to date and significantly exceeds the precision of all previous measurements combined.

The mass of the W boson, M_W, is an important parameter of the standard model (SM) of particle physics. Precise measurements of M_W and of other electroweak observables significantly constrain the mass of the as-yet-unobserved Higgs boson, which is predicted by the electroweak symmetry-breaking mechanism in the SM. Previous measurements [1–4] yield a world average value of $M_W = 80.399 \pm 23$ MeV [5] and, in conjunction with other electroweak data, determine the Higgs boson mass to be $M_H = 89^{+35}_{-25}$ GeV [5]. If the Higgs boson is observed, the comparison of its directly-measured mass with the SM prediction will be a powerful test of the model. An exclusion of the Higgs boson in the predicted mass range by direct searches would decisively point to new physics beyond the SM, for example, radiative corrections from supersymmetric particles to M_W [6].

The production of W bosons at $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron $p\bar{p}$ collider is dominated by the annihilation process $q\bar{q} \to W + X$ where X is initial-state QCD radiation. Leptonic decays of the W boson, $W \to \ell\nu_\ell$ ($\ell = e, \mu$), provide high-purity samples that allow a precise measurement of M_W.

In this Letter, we report a measurement of M_W using fits to three kinematic distributions in $W \to \mu\nu$ and $W \to e\nu$ decays. This measurement uses data corresponding to an integrated luminosity of 2.2 fb$^{-1}$ of $p\bar{p}$ collisions collected by the CDF II detector between 2002 and 2007, and supersedes an earlier result obtained in a subset of these data [3,4]. The CDF II detector [4] is a general-purpose apparatus designed to study $p\bar{p}$ collisions at the Tevatron. In this analysis, charged-particle trajectories (tracks) are reconstructed and measured using a drift chamber (COT) [7] immersed in a 1.4 T solenoidal magnetic field. Electromagnetic (EM) and hadronic calorimeters provide shower energy measurements as well as position measurements via wire chambers embedded at the EM shower maximum. Surrounding the calorimeters, drift chambers [8] identify muon candidates. Events are selected online if they have a muon (electron) with $p_T > 18$ GeV ($E_T > 18$ GeV) [9].
Offline we select muon candidates defined by a COT track having $p_T > 30$ GeV and associated with a minimum-ionizing energy deposition in the calorimeter and matching hits in the muon chambers. Cosmic rays are rejected with high efficiency using COT hit timing [10]. Electron candidates are required to have a COT track with $p_T > 18$ GeV and an EM calorimeter cluster with $E_T > 30$ GeV and must pass quality requirements on the COT track and the track-cluster matching. Additionally, they must satisfy requirements on the following quantities: pseudorapidity ($|\eta| < 1$) [9], the ratio of cluster energy to track momentum ($E/p < 1.6$), the ratio of energies detected in the hadronic and EM calorimeters ($E_{\mathrm{had}}/E_{\mathrm{EM}} < 0.1$), and a χ^2-based difference between the expected and observed transverse shower profiles [4,11]. We impose calorimeter fiducial requirements on electron candidates to ensure uniformity of response. When selecting the W-boson candidate sample, we suppress the Z-boson background by rejecting events with a second lepton. Events composing control samples of Z-boson candidates are required to have two oppositely-charged leptons satisfying the above criteria and an invariant mass ($m_{\ell\ell}$) between 66 and 116 GeV and vector-summed $p_T (p_T^F)$ less than 30 GeV.

We define the hadronic recoil $\vec{u} = \sum_i E_i \sin(\theta_i) \vec{n}_i$, where the sum is performed over calorimeter towers [12], with energy E_i, polar angle θ_i, and transverse direction specified by unit vectors \vec{n}_i. The sum excludes towers that contain energy deposition from the charged lepton(s). From \vec{p}_T conservation, the transverse momentum of the neutrino is inferred as $\vec{p}_T^\nu = -\vec{p}_T^L - \vec{u}$, where \vec{p}_T^L is the vector $p_T (E_T)$ of the muon (electron). We calculate the W-boson transverse mass as

$$m_T = \sqrt{2(p_T^L p_T^\nu - \vec{p}_T^L \cdot \vec{p}_T^\nu)}.$$

To obtain high-purity samples of W bosons, we require $30 < p_T^L < 55$ GeV, $30 < p_T^\nu < 55$ GeV, $|\vec{u}| < 15$ GeV, and $60 < m_T < 100$ GeV. The final samples consist of 470 126 (16 134) $W \rightarrow e\nu$ ($Z \rightarrow ee$) candidates and 624 708 (59 738) $W \rightarrow \mu\nu$ ($Z \rightarrow \mu\mu$) candidates.

Measurements of M_W are extracted by performing binned maximum-likelihood fits to the observed distributions of m_T, p_T^L, and p_T^ν using simulated line shapes (“templates”) as a function of M_W. A custom Monte Carlo simulation is used to generate templates between 80 and 81 GeV. The simulation includes a boson production and decay model, and a detailed model of detector response. The kinematics of W and Z boson production and decay are modeled using the RESBOS [13] generator. Using the Z-boson data, we tune the nonperturbative form factor in RESBOS, which describes the boson p_T spectrum at low p_T (~ 5 GeV), and α_s, which describes the boson p_T spectrum at intermediate p_T (~ 15 GeV). The radiation of multiple final-state photons is modeled with PHOTOS [14]. The PHOTOS QED model was checked with HORACE [15], which in addition to a leading-logarithm calculation of multiple initial- and final-state photons, also performs an exact $O(\alpha)$ calculation. We use the CTEQ6.6 [16] parton distribution functions (PDFs) of the (anti)proton and verify that the MSTW2008 [17] PDFs give consistent results. The CTEQ6.6 and MSTW2008 PDFs yield similar estimates of the M_W uncertainty. We quote the 68% confidence level (C.L.) uncertainty from the MSTW2008 ensemble of PDFs as a systematic uncertainty on M_W.

The charged-lepton track is simulated using a detailed model of the passive material in the tracking volume and of individual position measurements in the COT. We use a highly granular lookup table to model ionization and radiative energy loss, multiple Coulomb scattering, and Compton scattering in the tracking volume. The simulation generates and propagates bremsstrahlung photons and conversion electrons to the calorimeter and includes Landau-Pomeranchuk-Migdal [18] suppression for soft photon emission. Muon tracks from Y, W, and Z-boson decays are used to determine the COT position measurement resolution (~ 150 μm), which is implemented in the simulation as a function of radius. A helix fit (with beam

![FIG. 1. The $Z \rightarrow \mu\mu$ (top) and $Z \rightarrow ee$ (bottom) mass fits, showing the data (points), the best-fit simulation template (histogram) and the photon-pole contribution (shaded). The arrows indicate the fitting range.](image)
constraint for promptly produced tracks) is performed to simulate the reconstructed track.

A high-purity sample of cosmic ray muons collected concurrently with the collider data is used to perform a precise alignment of the COT. The trajectory of each cosmic ray muon is fitted to a single helix through the entire COT. This fit provides a robust reference for the internal alignment of sense wires, including gravitational and electrostatic displacements, resulting in a 2–5 μm precision in relative wire positions. We remove the remaining weakly constrained modes of COT deformation, based on the observed difference of \(\langle E/p \rangle \) between positrons and electrons from W-boson decays.

We calibrate the tracker momentum scale using \(J/\psi \rightarrow \mu\mu \) and \(Y(1S) \rightarrow \mu\mu \) samples, by performing a maximum-likelihood fit of the data to simulated invariant mass templates generated using the known mass values of these mesons [19]. The momentum scale is calibrated after alignment and energy loss corrections are derived from the \(J/\psi \) sample. Nonuniformities in the tracker magnetic field are corrected by measuring the dependence of the \(J/\psi \) mass on the mean polar angle of the muons. The dependence of the momentum scale on the difference of the muon polar angles is used to calibrate the polar angle measurement and the residual bias in track curvature as a function of polar angle. A 4% correction to the ionization energy loss is applied to eliminate the dependence of the momentum scale on \(1/p_T \) of the muons.

After finalizing this calibration, we perform a measurement of the Z-boson mass in the dimuon channel (see Fig. 1), initially blinded with an additive offset randomly selected from a flat distribution in the range \([-75, 75]\) MeV. The unblinded result is \(M_Z = 91180 \pm 12_{\text{stat}} \pm 10_{\text{syst}} \) MeV. This measurement is consistent with the world average of \(91188 \pm 2 \) MeV [5,19], providing an incisive cross-check of the tracking simulation and the momentum scale. Subsequently, we include the \(Z \rightarrow \mu\mu \) mass measurement as a constraint on the momentum scale. The systematic uncertainties due to QED radiative corrections and magnetic field nonuniformity dominate the total uncertainty of 0.009% in the combined momentum scale.

In the simulation of the electron cluster, nearby bremsstrahlung photons and conversion electrons have their energies merged with that of the primary electron. We use a custom implementation of GEANT4 [20] to model the distributions of electron and photon energy loss in the solenoidal coil and energy leakage into the hadronic calorimeter, as a function of \(E_T \) and incident angle. Using the calibrated tracker momentum scale, we fit the \(E/p \) peak in \(W \rightarrow e\nu \) (Fig. 2) and \(Z \rightarrow ee \) data in bins of \(E_T \) to determine the electron energy scale and nonlinearity of the calorimeter response. We fit the radiative tail of the \(E/p \) distribution to tune the amount of simulated material upstream of the COT by 2.6%. The EM calorimeter resolution is parameterized as the quadrature sum of a sampling term \(12_{\text{stat}}/\sqrt{E_T/\text{GeV}} \) and a constant term \(\kappa = (0.68 \pm 0.05)\% \) applied to the cluster energy. A secondary constant term \(\kappa_{\gamma} = (7.4 \pm 1.8)\% \) is applied only to the energies of bremsstrahlung photons and conversion electrons. We tune \(\kappa \) on the width of the \(E/p \) peak in the \(W \rightarrow e\nu \) sample and

![FIG. 2. The distribution of \(E/p \) for the \(W \rightarrow e\nu \) data (points) and the best-fit simulation (histogram) including the small jet background. The arrows indicate the fitting range used for the electron energy calibration.](image)

![FIG. 3. The \(m_T \) distribution for muons (top) and the \(p_T \) distribution for electrons (bottom). The data (points) and the best-fit simulation template (histogram) including backgrounds (shaded) are shown. The arrows indicate the fitting range.](image)
\(\kappa \) on the width of the mass peak in a \(Z \to ee \) subsample where both electrons have \(E/p > 1.11 \).

We use the tuned energy scale to perform an independent measurement of the \(Z \)-boson mass in the dielectron channel (see Fig. 1), initially blinded with the same offset as used for the measurement in the dimuon channel. The unblinded result, \(M_Z = 91.230 \pm 0.030_{\text{stat}} \pm 0.14_{\text{syst}} \) MeV, is consistent with the world average, providing a stringent cross-check of our EM calorimeter energy scale calibration and electron simulation. Cross-checks of the \(Z \to ee \) mass measurements using exclusive subsamples consisting of electrons with \(E/p > 1.11 \) and \(E/p < 1.11 \) respectively, performed with both calorimetry and tracking, give consistent results. The final determination of the electron energy scale combines the \(E/p \)-based calibration with the \(M_Z \) measurement, taking the correlated uncertainty due to the QED radiative correction into account.

The calorimeter towers containing lepton energy depositions are excluded from the calculation of the recoil vector \(\vec{u} \) (i.e., lepton removal). The underlying event energy in these towers is measured using the nearby towers in \(W \)-boson data. The \(\vec{u} \) resolution due to the underlying event and additional \(p \bar{p} \) collisions is modeled using data triggered on inelastic \(p \bar{p} \) interactions and random bunch crossings, respectively. The \(\vec{p}_T \) imbalance between the \(\vec{p}_T^{\ell\ell} \) and \(\vec{u} \) in \(Z \to \ell\ell \) events is used to tune the recoil model, which also includes the response to the initial-state QCD radiation and its resolution. Cross-checks of the recoil model show good agreement between \(W \)-boson data and simulation.

Kinematic distributions of background events passing the event selection cuts are included in the template fits with their estimated normalizations. Backgrounds arise from jets misidentified as leptons, \(Z \to \ell\ell \) decays with only one reconstructed lepton, \(W \to \tau \nu \to \ell \nu \bar{\nu} \), pion and kaon decays in flight (DIF), and cosmic rays. We estimate jet, DIF, and cosmic ray backgrounds from the data and \(Z \to \ell\ell \) and \(W \to \tau \nu \) backgrounds from simulation. Background fractions for the muon (electron) data sets are evaluated to be 7.35\% (0.14\%) from \(Z \to \ell\ell \) decays, 0.88\% (0.93\%) from \(W \to \tau \nu \) decays, 0.04\% (0.39\%) from jets, 0.24\% from DIF, and 0.02\% from cosmic rays.

As with the \(Z \)-boson mass measurements, the \(M_W \) fit values were blinded during analysis by adding another unknown offset in the range \([-75, 75]\) MeV. The unblinded fit results (e.g., Fig. 3) are summarized in Table I. The consistency of these results confirms that the \(W \)-boson production, decay, and the hadronic recoil are well-modeled. Systematic uncertainties from analysis parameters are propagated to \(M_W \) by fitting events, generated with the parameter values varied by their uncertainties, with the nominal templates. The statistical correlations between fits are evaluated with simulated experiments and are found to be 69\% (68\%) between \(m_T \) and \(p_T \) (\(p_T^{\mu} \)) fit values, and 28\% between \(p_T \) and \(p_T^{\mu} \) fit values. We perform a numerical combination of the six individually fitted \(M_W \) values, including correlations, using the BLUE [21] method and obtain \(M_W = 80.387 \pm 19 \) MeV, with

![FIG. 4. The 68\% C.L. ellipses of \(M_W \) and the top quark mass \(m_{top} \), using the Tevatron-average value [22] of \(m_{top} \). Also shown as bands are the allowed ranges for the SM Higgs boson mass, based on direct searches conducted at LEP [23], the Tevatron [24], and the LHC [25,26].](image-url)
χ²/dof = 6.6/5. The m_T, p_T^e and p_T^μ fits in the electron (muon) channel contribute weights of 17.5% (35.5%), 13.8% (17.3%), and 7.1% (8.8%), respectively. The systematic uncertainties for the combined result are shown in Table II. The comparison of the previous world average and this measurement of M_W is shown in Fig. 4.

In conclusion, we report a new measurement of the W-boson mass with the CDF II detector at the Fermilab Tevatron using data corresponding to 2.2 fb⁻¹ of integrated luminosity. The measured value M_W = 80.387 ± 12stat. ± 15syst. = 80.387 ± 19 MeV is more precise than all previous measurements of M_W combined. The world average becomes M_W = 80.390 ± 16 MeV. This result has a significant impact on the global electroweak fit [5]; the limit on the fitted mass of the SM Higgs boson has been reduced from M_H < 158 GeV to M_H < 145 GeV at the 95% C.L.

We thank the Fermilab staff and the technical staff of the participating institutions for their vital contributions. We thank C. Balazs, U. Baur, C. M. Carlons Calame, K. Ellis, G. Montagna, R. Thorne, A. Vicini, D. Wackeroth, and Z. Was for helpful discussions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the National Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, UK; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; and the Australian Research Council (ARC).

^aDeceased
^bVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.
^cVisitor from University of CA Irvine, Irvine, CA 92697, USA.
^dVisitor from University of CA Santa Barbara, Santa Barbara, CA 93106, USA.
^eVisitor from University of CA Santa Cruz, Santa Cruz, CA 95064, USA.
^fVisitor from Institute of Physics, Academy of Sciences of the Czech Republic, Czech Republic.
^gVisitor from CERN, CH-1211 Geneva, Switzerland.
^hVisitor from Cornell University, Ithaca, NY 14853, USA.
^iVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.
^jVisitor from Office of Science, U.S. Department of Energy, Washington, DC 20585, USA.
^kVisitor from University College Dublin, Dublin 4, Ireland.
^lVisitor from ETH, 8092 Zurich, Switzerland.
^mVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.
^nVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.
^oVisitor from University of Iowa, Iowa City, IA 52242, USA.
^pVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.
^qVisitor from Kansas State University, Manhattan, KS 66506, USA.
^rVisitor from Ewha Womans University, Seoul, 120-750, Korea.
^sVisitor from University of Manchester, Manchester M13 9PL, United Kingdom.
^tVisitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.
^uVisitor from University of Melbourne, Victoria 3010, Australia.
^vVisitor from Muons, Inc., Batavia, IL 60510, USA.
^wVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.
^xVisitor from National Research Nuclear University, Moscow, Russia.
^yVisitor from Northwestern University, Evanston, IL 60208, USA.
^zVisitor from Notre Dame University, Notre Dame, IN 46556, USA.
^aaVisitor from Universidad de Oviedo, E-33007 Oviedo, Spain.
^abVisitor from CNRS-IN2P3, Paris, F-75205 France.
^acVisitor from Texas Tech University, Lubbock, TX 79609, USA.
^adVisitor from Universidad Tecnica Federico Santa Maria, 110 Valparaiso, Chile.
^aeVisitor from Yarmouk University, Irbid 211-63, Jordan.

Pseudorapidity is defined as \(\eta = -\ln[\tan(\theta/2)] \), where \(\theta \) is the polar angle from the beam axis. Energy (momentum) transverse to the beam is denoted as \(E_T \) (\(p_T \)). We use the convention \(c = 1 \) throughout this paper.

