The addition of fibers does not have a significant impact on the total and interconnected air voids. However, an increase of binder content of 0.5% in the mix leads to a decrease in the voids content, approximately. Reinforced PA mixtures with 4.5% binder content had TAV over 20% while reinforced PA mixtures with 5.0% binder content had TAV over 18%.

Adding 0.05% polyolefin-aramid fibers increased the raveling resistance in dry conditions of PA mixture with 4.5% binder content. Better results were obtained by increasing the binder content of using fibers. Regressing the particle loss in wet conditions, 5.0% binder content is recommended to properly coat the aggregates and hence strengthening the cohesive forces that can be affected by the action of water. Polyolefin-aramid fibers have proved to work well as stabilizer additives. However, with low binder contents (i.e., 4.0%) the use of fibers is not necessary to prevent binder drain-down. On the other hand, the use of fibers is recommended for higher binder contents (i.e., 5.0%) in order to retain the fine fraction in the mixture.

As for the IT at 0°C, the effect of adding polyolefin-aramid fibers in the asphalt mortar on its tensile strength was not relevant at all. However, at -15°C the inclusion of fibers has the potential effect of increasing the tensile strength in the asphalt mortar. The highest tensile strength was obtained when adding 0.1% polyolefin-aramid fibers.