Cuadro de Mandos Integral de IPS-Norte
(IPS-Norte Balanced Scoreboard)

Trabajo de Fin de Grado
para acceder al

GRADO EN INGENIERÍA INFORMÁTICA

Autor: Guillermo Argumosa Arroyo
Directora: Marta Elena Zorrilla Pantaleón

Septiembre – 2019
Índice de figuras

Figura 1. Calendario de desarrollo ... 11
Figura 2. Estructura general del sistema ... 12
Figura 3. Estrellas de la perspectiva de ventas .. 15
Figura 4. Correspondencias indicadores-tablas ... 16
Figura 5. Estructura de dimensión de artículos ... 17
Figura 6. Estructura de dimensión de clientes ... 17
Figura 7. Estructura de dimensión de empresas .. 17
Figura 8. Estructura de dimensión de proyectos ... 18
Figura 9. Estructura de dimensión de tiempo ... 18
Figura 10. Estructura de dimensión de zonas ... 19
Figura 11. Estructura de hechos de compras ... 19
Figura 12. Estructura de hechos de ventas ... 19
Figura 13. Ejemplo de selección de datos ETL ... 20
Figura 14. Ejemplo de conversión de metadatos ETL 20
Figura 15. Ejemplo de asignación de datos ETL .. 21
Figura 16. Estructura de carga de datos ETL .. 21
Figura 17. Vista del origen de datos .. 23
Figura 18. Relaciones entre dimensiones y hechos 23
Figura 19. MDX y definición de campo calculado “Ventas Netas” 24
Figura 20. MDX y definición de campo calculado “Porcentaje Proyecto Cliente” 25
Figura 21. Pantalla resumen del cuadro de mandos 26
Figura 22. Pantalla detalle del cuadro de mandos ... 27
Figura 23. Ejemplo de ampliación de gráficos .. 29
Figura 24. Ejemplo de DrillDown ... 30
Figura 25. Ejemplo de segmentadores combinados 31
Resumen

Este trabajo fin de grado tiene por objeto construir un cuadro de mandos para la consultora informática IPS-Norte que la permita disponer de una visión global de su perspectiva de ventas y analizar tanto gráfica como numéricamente los indicadores que les permitan optimizar los procesos de desarrollo y gestión internos.

Para ello, se diseñó un Data Warehouse y se cargó a través de un paquete de Integration Services de la base de datos relacional que da soporte al ERP de la empresa. Posteriormente, por medio de un proyecto Analysis Services, se procesaron los cubos de datos MOLAP para las distintas perspectivas a observar.

Finalmente, estos datos multidimensionales se explotaron a través de la herramienta “Solmicro BI” (basada en “Power BI” de Microsoft y archivos XML) para construir el cuadro de mandos y mostrar los indicadores solicitados.

Palabras clave: cuadro de mandos, indicadores de negocio, inteligencia de negocio.
Summary

This end-of-degree work aims to build a dashboard for the computer consultant IPS-Norte that allows it to have a global view of its sales perspective and analyze both graphically and numerically the indicators that allow them to optimize internal development and management processes.

To this end, a Data Warehouse was designed and loaded through an Integration Services package from the relational database that supports the company's ERP. Subsequently, through an Analysis Services project, the MOLAP data cubes were processed for the different perspectives to be observed.

Finally, these multidimensional data were exploited through the “Solmicro BI” tool (based on Microsoft’s "Power BI" and XML files) to build the dashboard and show the requested indicators.

Keywords: scorecard, KPI, business intelligence.
1. Introducción

La especificación mostrada a continuación en forma de memoria, define el desarrollo de un proyecto de diseño de un cuadro de mandos integral para la consultora informática IPS-Norte, ubicada en el Parque Científico y Tecnológico de Cantabria, en Santander.

Para describir brevemente esta empresa me apoyaré en tres conceptos esenciales que permiten caracterizarla: La visión, la misión y los valores.

La misión de una empresa es la labor que ofrece al mercado, así como el público al que va dirigida esta labor. Esto puede definirse contestando a: ¿Qué es IPS-Norte? En este caso, IPS-Norte es una consultoría informática y de negocio encargada de mejorar la productividad de otras empresas ya sea por medio de mejorar sus procesos y estrategias internas o gestionando sus sistemas de información. Para ello, ofrece consultorías personales de negocio, así como herramientas ERP como “Expertis”, de captura de datos en planta como Axón o, lo que nos concierne en el caso de este proyecto, herramientas de Business Intelligence como “Solmicro BI”.

La visión de una empresa puede definirse como el objetivo a largo plazo que pretende alcanzar analizando sus debilidades, amenazas, fortalezas y oportunidades (análisis DAFO) y tomando alternativas estratégicas según los resultados obtenidos de estos factores. En el caso de este proyecto, esto se podría definir contestando a la pregunta: ¿Qué quiere lograr IPS-Norte? El objetivo estratégico definido por IPS-Norte actualmente es llegar a ser la empresa de consultoría informática y de negocio líder del sector en Cantabria, así como tener un gran porcentaje de sus proyectos dirigidos a empresas internacionales.

Los valores se definen como los principios éticos y comportamientos que constituyen la empresa: ¿Cómo es IPS-Norte? Lo que define la ética de IPS-Norte es la confianza que gana de sus clientes al ofrecer servicios muy personalizados, a medida, y una gran cercanía durante todo el desarrollo de cualquier proyecto realizado para ellos, teniendo un soporte y mantenimiento rápido y personal.

Un primer paso esencial para cualquier empresa debería ser tener una respuesta clara para cualquier de estas tres preguntas, por las cuales tener una base sólida sobre la que pueda desarrollarse su actividad. Teniendo claras estas guías a largo plazo, se ha de definir una diferenciación del producto o servicio ofrecido por la empresa con respecto a sus demás competidores, por ejemplo, sabiendo claramente cómo llamar la atención a sus clientes objetivo. Existen varias alternativas: Siendo una empresa diferenciada como líder en su
sector, destacando por la asequibilidad de sus precios o, como en el caso de IPS-Norte, ofreciendo cercanía y personalización a los clientes.

Algunas organizaciones ofrecen diversos atributos innovadores en sus productos o servicios, otras hacen uso de su propia imagen para ganar clientela... Para IPS-Norte es esencial ganarse la lealtad de sus clientes, pues los servicios que se les ofrecen necesitan ser mantenidos con el tiempo y, como se ha mencionado anteriormente, la cercanía y personalización de estos servicios es lo más importante que hace destacar a esta empresa.

Tras realizar esta introspección, es cuando se puede definir mejor el objetivo final de este proyecto.
2. Objetivo

La directiva de la empresa solicitó la realización de un proyecto de diseño e implantación de un cuadro de mandos integral con el fin de explotar la información de la empresa guardada diariamente en base de datos a través de una herramienta ERP llamada “Expertis”, de manera que esta misma directiva pudiera tener una visión global de la situación de la empresa (procesos, finanzas, ventas, entre otros) dinámicamente y por medio de una interfaz sencilla y fácil de interpretar. Hasta el momento está información se recopilaba y se mostraba a partir de una consulta directa a la base de datos, sin sistematización ni una definición concisa y única de los indicadores, lo que conllevaba una falta de precisión en la interpretación de las métricas y dependencia del equipo de desarrollo para extraer las mismas.

El desarrollo del proyecto se encuadra dentro del ámbito de la inteligencia de negocio o, en inglés, Business Intelligence (BI), que tiene por objeto procesar datos procedentes de la gestión diaria de las organizaciones, estructurarlos y transformarlos en información útil para la toma de decisiones, elaborando y mostrando indicadores clave de negocio (denominados KPI) en un cuadro de mandos integral o dashboard [11][12].

Un cuadro de mandos integral es un panel que muestra la información relevante de la organización con una frecuencia de actualización determinada y que permite tomar decisiones a su directiva a partir de los resultados que se obtengan del análisis de estos. Todo cuadro de mandos integral ha de tener bien definidos los siguientes aspectos:

- Perspectivas: Módulos de una empresa que el cuadro de mandos pretende analizar (financiero, producción, clientes, entre otros).
- Objetivos: Los fines que se pretenden alcanzar con el uso y análisis del propio cuadro de mandos.
- Mapa estratégico: División de los objetivos de la empresa en perspectivas y todas sus influencias e interrelaciones, usado de una forma más abstracta para medir el cumplimiento de estos objetivos.
- Indicadores: Formas de medir gráficamente la información relacionada con el cumplimiento de los objetivos, basados en una fórmula matemática que devuelve un resultado.
- Responsables: Personal encargado de interpretar la información mostrada en el cuadro de mandos y tomar decisiones a partir de ella.
3. Calendario de desarrollo

La idea inicial de este proyecto surgió en febrero 2019 por parte de la directiva ya que les urgía disponer de un cuadro de mandos similar a alguno ya desarrollado previamente para alguno de sus clientes.

Como primera toma de contacto, participé en dos reuniones organizadas por la empresa: una primera en la que se comentaron las motivaciones de hacer uso del concepto Business Intelligence para ayudar en la toma de decisiones estratégicas de la empresa que estuvo dirigida a todo el personal de la empresa y una segunda, en la que se expusieron conceptos más técnicos relacionados con la implementación en las distintas capas del desarrollo de este proyecto dirigida al personal técnico y funcional de IPS-Norte.

Antes de comenzar el propio desarrollo, revisé una serie de manuales en texto y vídeos de formación online proporcionados por la empresa “Solmicro”, proveedora de distintos sistemas software a IPS-Norte, en los que se exponían también paso a paso todos los conceptos, motivaciones e implementaciones derivadas del diseño de un cuadro de mandos integral. Esta fase llevó alrededor de un mes y medio, tras el cual se tuvo una idea clara de los pasos a realizar para construir un cuadro de mandos integral para la empresa [1].

Mientras se estaba realizando este estudio previo, la directiva fue especificando más concretamente una serie de requisitos técnicos y gráficos que querían que se incluyeran en el proyecto.

Una vez determinados los requisitos completos de la perspectiva de ventas, se especificó que sería necesario visualizar un ejemplo del funcionamiento de un cuadro de mandos integral, creado en entorno de pruebas con una base de datos ejemplo, un esqueleto de Data Warehouse y varios cubos MOLAP y un diseño XML predefinido a ejecutar en “Solmicro BI”. Este ejemplo podría desarrollarse a partir de un modelo simple orientado a la formación de otras empresas que proporciona nuestro proveedor “Solmicro”. Esto se realizaría con el objetivo de estudiar la viabilidad en horas de trabajo del desarrollo del proyecto. La creación de este prototipo llevó alrededor de un mes.

Viendo la viabilidad de esta solución, la directiva decidió que se llevara adelante la implementación de todo lo necesario para visualizar el cuadro de mandos propio de la empresa. Esta fase duró cuatro meses, en los que se diseñó por completo el Data Warehouse, la carga de datos desde la base de datos del ERP, el diseño y procesamiento de los cubos y los requisitos gráficos de la capa de presentación del cuadro de mandos.
Finalmente, se realizó una fase de despliegue en nuestro propio entorno local y pruebas para comprobar que los datos mostrados en el cuadro de mandos se correspondían con los visualizados en la herramienta ERP “Expertis”.

A continuación, la figura 1 muestra un diagrama de Gantt que representa el calendario completo de desarrollo del proyecto.

Figura 1. Calendario de desarrollo: Diagrama de Gantt representativo de las duraciones de cada tarea del proyecto (diseñado con la herramienta online gratuita Canva).
4. Conceptos previos a la implementación

Antes de abordar las fases de diseño y ejecución del proyecto, es importante explicar los elementos que constituyen una solución *Business Intelligence*.

La figura 2 recoge gráficamente los componentes que conforman la solución desarrollada.

A. Base de datos del ERP

Inicialmente, los datos necesarios a explotar, están contenidos en una base de datos relacional SQL almacenada en un servidor interno de IPS-Norte sobre la cual se recoge la operativa diaria de la empresa (aqui se almacenan los datos procesados por la herramienta ERP “Expertis” usada tanto en la empresa como en los clientes de los cuales es consultora).

La herramienta utilizada para la gestión de esta base de datos es SQL *Server Management Studio*.

B. Data Warehouse

En el caso de este proyecto, se hizo uso de un almacén de datos intermedio situado en el mismo servidor que la base de datos del ERP.

Este almacén de datos no sigue la estructura habitual de las bases de datos relacionales usadas por los ERP tanto de IPS-Norte como de sus clientes, sino que sigue una estructura dimensional. Esta se compone de distintas tablas que representan hechos (datos a medir y visualizar) o dimensiones (datos por los que filtrar estas mediciones).

Cada una de estas tablas de hechos o dimensiones guarda relación con una o varias tablas de la base de datos del ERP. Por ejemplo, la dimensión que almacena datos sobre artículos
extrae datos de la tabla maestra de artículos del ERP, así como de otras tablas relacionadas como la de tipos de artículo, familias de artículo, entre otras.

C. Carga de datos del ERP

Haciendo uso de un paquete ETL de SQL Integration Services diseñado a través de un proyecto en Visual Studio 2017, se definen procesos de borrado inicial de los datos contenidos en el Data Warehouse y posterior carga de la base de datos del ERP a las tablas de hechos y dimensiones definidas en el Data Warehouse.

D. Cubo MOLAP y Procesado multidimensional

Haciendo uso de un proyecto de Visual Studio de Analysis Services, se define una vista del origen de datos del Data Warehouse así como las métricas calculadas, datos a visualizar y el tipo de procesamiento con el que se construirá el cubo, en este caso, MOLAP (Multidimensional Online Analytical Processing), para tener un mayor rendimiento y no depender del gestor de base de datos, pues este tipo de cubo permite tener portabilidad sobre el fichero del cubo independientemente de este gestor.

E. Visualización en “Solmicro BI”

Accediendo directamente al cubo MOLAP previamente definido y procesado a través de la herramienta “Solmicro BI”, se tiene la opción de diseñar distintas pestañas y gráficos que visualizan los datos necesarios a explotar y a partir de los cuales se pueden tomar decisiones estratégicas. Estos diseños se almacenan en archivos XML [2][3][4].
5. Cuadro de mandos

A continuación, se define la especificación de cada una de las fases del desarrollo del proyecto: fase de requisitos, fase de diseño y fase de presentación y despliegue.

5.1. Requisitos

La directiva de IPS-Norte propuso una serie de indicadores para abordar la perspectiva de ventas.

Dentro de esta perspectiva, se representan los indicadores de respuesta a clientes, siendo aquellos que indican datos sobre facturación. Se tratarán facturas de venta para cálculos que se refieren facturación bruta y facturas de venta y compra para lo que se refiere a facturación neta. Los indicadores requeridos son los siguientes:

IND01 – Ventas Brutas y Netas Anuales (Tabla).
IND02 – Ventas Brutas y Netas Anuales (Gráfico de barras).
IND03 – Ventas Brutas, Netas y Costes Exteriores Anuales (Gráfico de barras).
IND04 – Ventas Brutas y Netas por Año/Mes (Tabla).
IND05 – Ventas Brutas y Netas Anuales por Familia de Artículo (Tabla).
IND06 – Ventas Netas por Familia de Artículo (Gráfico de tarta).
IND07 - Ventas Brutas y Netas Anuales por Familia de Artículo (Gráfico de barras).
IND08 – Ventas Brutas, Netas y Costes Exteriores por Año-Trimestre-Mes (Tabla).
IND09 – Ventas Brutas, Netas y Costes Exteriores por Año-Trimestre-Cliente (Tabla).
IND10 – Ventas Netas por Cliente (Gráfico de tarta).
IND11 – Ventas Brutas por Cliente (Gráfico de tarta).
IND12 – Ventas Brutas por Zona (Gráfico de tarta).
IND13 – Ventas Brutas y Netas por Mercado (Tabla).
IND14 – Ventas Brutas y Netas por Zona (Tabla).
IND15 – Ventas Brutas, Netas y Porcentaje por Cliente-Tipo de Proyecto (Tabla).
En cuanto a requisitos visuales, se solicitó la presencia de ciertas tablas y gráficos en dos pantallas, dejando a decisión propia el cómo situarlas de la manera más cómoda y sencilla para el usuario. Estos indicadores son utilizados para medir el éxito por parte de la directiva haciendo comparativa con los resultados de años anteriores. Teniendo en cuenta que los indicadores definidos son todos de facturación, se tendrá un caso de éxito si para cualquier indicador, la facturación es mayor que la del ejercicio anterior.

5.2. Diseño

Una vez establecidos los requisitos definidos a modo de indicadores se comienza la fase de desarrollo, dividida en diseño de la base de datos dimensional, implementación de procesos ETL y diseño e implementación del cuadro de mandos (interfaz).

En esta perspectiva, la estructura dimensional debe recoger los datos procedentes de ventas (facturas de venta) y de compras (facturas de compra). Estos datos serán filtrados por proyecto, cliente, zona, empresa, artículo y tiempo. Por tanto, la estructura multidimensional para realizar estos indicadores se ve representada en la figura 3 mostrada a continuación.

Figura 3. Estrellas de la perspectiva de ventas: Pueden verse representadas las dimensiones de color azul y los hechos de color amarillo.

Con el objetivo de obtener los indicadores definidos en el apartado anterior, se establecen una serie de correspondencias entre cada indicador y los campos de las tablas de hechos y
dimensiones que van a utilizar. Estas relaciones vienen indicadas en forma de tabla en la figura 4 mostrada a continuación.

<table>
<thead>
<tr>
<th>IND</th>
<th>DimArticulo</th>
<th>DimCliente</th>
<th>DimZona</th>
<th>DimEmpresa</th>
<th>DimTiempo</th>
<th>DimProyecto</th>
<th>FactCompra</th>
<th>FactVentas</th>
</tr>
</thead>
<tbody>
<tr>
<td>IND01</td>
<td>Año</td>
<td>Indicators</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
</tr>
<tr>
<td>IND02</td>
<td>Año</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND03</td>
<td>Año, Mes</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND04</td>
<td>Año, Mes</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND05</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND06</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND07</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND08</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND09</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND10</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND11</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND12</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND13</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND14</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
<tr>
<td>IND15</td>
<td>DescFamilia</td>
<td>DimZona</td>
<td>DimEmpresa</td>
<td>Año</td>
<td>Indicators</td>
<td>ImporteCompra</td>
<td>ImporteA</td>
<td></td>
</tr>
</tbody>
</table>

Figura 4. Correspondencias indicadores-tablas.

Como se puede observar, los datos de la dimensión de empresa no son utilizados para los indicadores, pues IPS-Norte no es un grupo y realizar un filtrado por empresa no es necesario.

Cabe destacar que inicialmente se creó la dimensión de zonas para poder hacer este filtrado en los indicadores, pero no se realizó lo mismo para la dimensión de mercados. Esto se debe a que como el mercado ya es un campo de la dimensión de clientes, se puede hacer el filtrado a través de ésta. Ante el correcto funcionamiento de ambos filtrados, se conservó este modelo para evitar crear conflictos.

5.2.1. Base de datos dimensional

Las tablas del *Data Warehouse* se han diseñado siguiendo el patrón proporcionado por "Solmicro".

Las tablas tienen los siguientes campos:

- **DimArticulo**: Dimensión que representa los artículos gestionados por la empresa. en este caso, servicios de consultoría o programación, entre otros, ofrecidos a los clientes, o gastos, dietas, licencias, entre otros, necesarias a pagar a proveedores).
Figura 5. Estructura de dimensión de artículos.

DimCliente: Dimensión que representa a los clientes existentes de la empresa.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Allow Nulls</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEmpresa</td>
<td>nvarchar(25)</td>
<td>☑</td>
<td>Identificador de la empresa en la que se gestiona el artículo (en este caso será IPS-Norte, única entidad)</td>
</tr>
<tr>
<td>IDArticulo</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador del artículo</td>
</tr>
<tr>
<td>DescArticulo</td>
<td>nvarchar(200)</td>
<td>☑</td>
<td>Descripción del artículo</td>
</tr>
<tr>
<td>IDFamilia</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador de la familia del artículo</td>
</tr>
<tr>
<td>DescFamilia</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Descripción de la familia del artículo</td>
</tr>
<tr>
<td>IDTipo</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador del tipo del artículo (compraventa o unidad de negocio)</td>
</tr>
<tr>
<td>DescTipo</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Descripción del tipo del artículo</td>
</tr>
</tbody>
</table>

Figura 6. Estructura de dimensión de clientes.

DimEmpresa: Dimensión que representa las empresas contenidas por IPS-Norte. En este caso tiene un único registro que representa a la propia empresa IPS-Norte ya que no es un grupo de empresas.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Allow Nulls</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDEmpresa</td>
<td>nvarchar(25)</td>
<td>☑</td>
<td>Identificador de la empresa en la que se gestiona el cliente (en este caso será IPS-Norte, única entidad)</td>
</tr>
<tr>
<td>IDCliente</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador del cliente</td>
</tr>
<tr>
<td>DescCliente</td>
<td>nvarchar(800)</td>
<td>☑</td>
<td>Descripción del cliente</td>
</tr>
<tr>
<td>CodPostal</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Código postal del cliente</td>
</tr>
<tr>
<td>IDPaís</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador del país del cliente</td>
</tr>
<tr>
<td>DescPaís</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Descripción del país del cliente</td>
</tr>
<tr>
<td>Provincia</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Provincia del cliente</td>
</tr>
<tr>
<td>IDMercado</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador del mercado del cliente</td>
</tr>
<tr>
<td>DescMercado</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Descripción del mercado del cliente</td>
</tr>
<tr>
<td>IDTipoCliente</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador del tipo de cliente (Privado/Público)</td>
</tr>
<tr>
<td>DescTipoCliente</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Descripción del tipo de cliente</td>
</tr>
<tr>
<td>IDZona</td>
<td>nvarchar(50)</td>
<td>☑</td>
<td>Identificador de la zona del cliente</td>
</tr>
<tr>
<td>DescZona</td>
<td>nvarchar(100)</td>
<td>☑</td>
<td>Descripción de la zona del cliente</td>
</tr>
<tr>
<td>IDGeografíaKey</td>
<td>bigint</td>
<td>☑</td>
<td>Campo potencialmente usado para la ubicación del cliente en mapa</td>
</tr>
<tr>
<td>ExportaciónNacional</td>
<td>varchar(11)</td>
<td>☑</td>
<td>Campo potencialmente usado para la ubicación del cliente en mapa</td>
</tr>
</tbody>
</table>

Figura 7. Estructura de dimensión de empresas.

DimProyecto: Dimensión que representa cada uno de los trabajos (tareas de bajo nivel) realizados para cada uno de los proyectos en activo de la empresa.
Figura 8. Estructura de dimensión de proyectos.

DimTiempo: Dimensión que guarda un registro por cada día desde el 1 de enero de 1998. Estos datos de fechas son utilizados por los filtradores temporales en los gráficos del cuadro de mandos.

<table>
<thead>
<tr>
<th>Column Name</th>
<th>Data Type</th>
<th>Allow Nulls</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
<td>datetime</td>
<td>☐</td>
<td>Día en formato YYYY-MM-DD</td>
</tr>
<tr>
<td>MesSinAño</td>
<td>int</td>
<td>☑</td>
<td>Número del mes de la fecha</td>
</tr>
<tr>
<td>NombreMesSinAño</td>
<td>nvarchar(30)</td>
<td>☑</td>
<td>Nombre del mes de la fecha</td>
</tr>
<tr>
<td>Mes</td>
<td>int</td>
<td>☐</td>
<td>Mes de la fecha en formato YYYYMM</td>
</tr>
<tr>
<td>NombreMes</td>
<td>nvarchar(30)</td>
<td>☐</td>
<td>Nombre del mes y año de la fecha</td>
</tr>
<tr>
<td>Trimestre</td>
<td>int</td>
<td>☐</td>
<td>Trimestre de la fecha en formato YYYYT</td>
</tr>
<tr>
<td>NombreTrimestre</td>
<td>nvarchar(30)</td>
<td>☐</td>
<td>Nombre del trimestre y año de la fecha</td>
</tr>
<tr>
<td>Cuatrimestre</td>
<td>int</td>
<td>☐</td>
<td>Cuatrimestre de la fecha en formato YYYYC</td>
</tr>
<tr>
<td>NombreCuatrimestre</td>
<td>nvarchar(30)</td>
<td>☐</td>
<td>Nombre del cuatrimestre y año de la fecha</td>
</tr>
<tr>
<td>Semestre</td>
<td>int</td>
<td>☐</td>
<td>Semestre de la fecha en formato YYYYS</td>
</tr>
<tr>
<td>NombreSemestre</td>
<td>nvarchar(30)</td>
<td>☐</td>
<td>Nombre del semestre y año de la fecha</td>
</tr>
<tr>
<td>Año</td>
<td>int</td>
<td>☐</td>
<td>Año de la fecha</td>
</tr>
<tr>
<td>AñoDesc</td>
<td>int</td>
<td>☑</td>
<td>Año de la fecha en negativo</td>
</tr>
<tr>
<td>Semana</td>
<td>int</td>
<td>☑</td>
<td>Semana de la fecha en formato YYYYWW</td>
</tr>
<tr>
<td>SemanaSinAño</td>
<td>int</td>
<td>☑</td>
<td>Número de la semana de la fecha</td>
</tr>
<tr>
<td>NombreSemana</td>
<td>nvarchar(30)</td>
<td>☑</td>
<td>Nombre de la semana de la fecha (S Número)</td>
</tr>
</tbody>
</table>

Figura 9. Estructura de dimensión de tiempo.

DimZona: Dimensión que representa cada una de las zonas geográficas gestionadas por la empresa.
FactCompra: Tabla de hechos que guarda los datos relacionados con compras realizadas a proveedores de la empresa.

FactVentas: Tabla de hechos que guarda los datos relacionados con ventas realizadas a clientes de la empresa.

5.2.2. ETL

Para cargar datos en estas tablas, se programan procesos ETL que consisten en la realización de select e insert directos de una BD relacional, realizando ciertas transformaciones de metadatos en la carga. A continuación, se ejemplifica el proceso con la carga de DimArticulo, representada en las figuras 13, 14 y 15, mostradas a continuación.
Figura 13. Ejemplo de selección de datos ETL: Sentencia SQL usada para seleccionar los datos de la base de datos del ERP para cargarlos en la dimensión de artículos.

Figura 14. Ejemplo de conversión de metadatos ETL: Asignaciones a tipos de datos de los campos provenientes de la base de datos del ERP antes de ser cargados al Data Warehouse.
Figura 15. Ejemplo de asignación de datos ETL: Correspondencia de los datos cargados desde la base de datos del ERP y transformados a cierto tipo de datos con la dimensión de artículos.

Siguiendo este proceso, se ha realizado la implementación de la carga de datos desde la base de datos de IPS-Norte del ERP “Expertis” hacia el Data Warehouse. Gráficamente, puede visualizarse en la figura 16 mostrada a continuación.

Figura 16. Estructura de carga de datos ETL.

Se realiza un borrado de los datos almacenados en las tablas de hechos de ventas y compras, así como en las tablas de dimensiones de clientes, proveedores, artículos, proyectos y zonas.
A pesar de haber tratado de acordar un sistema para comparar los datos ya cargados en el *Data Warehouse* y solo traer los nuevos o modificados en la base de datos del ERP, se exige por parte de la empresa solicitante el realizar un borrado total del *Data Warehouse*, ya que la empresa “Solmicro”, distribuidora del software “Solmicro BI”, lo realiza de esta misma manera. No se observa inicialmente problema de rendimiento porque el volumen de datos no es elevado.

Tras realizar este borrado, se procede a cargar los datos del ERP relacionados con artículos, tipos de artículos y familias de artículos en la dimensión de artículos del *Data Warehouse*, datos comunes a las dimensiones y hechos del cubo.

Seguidamente, se cargan los datos en las tablas de dimensiones de zonas, de clientes (clientes, países, mercados, tipos y zonas relacionadas con los clientes), de proyectos (proyectos, tipos de proyectos, trabajos y tipos de trabajo relacionados con los proyectos) y de proveedores (proveedores, países, mercados, tipos y zonas relacionadas con los proveedores).

Tras esto, se cargan los datos en las tablas de hechos. Para las ventas, se traen datos de facturas de venta creadas a partir de cierta fecha (esta fecha se puede establecer a través de un parámetro modificable en la propia aplicación “Expertis”). Para las compras, se traen datos de facturas de compra relacionadas con proyectos externos y creadas a partir de la misma fecha parametrizable mencionada anteriormente.

Una vez diseñada la carga de datos correctamente y comprobado que se cargan los datos necesarios en el *Data Warehouse*, se procedió a diseñar la vista del origen de datos del cubo de clientes, visible en la figura 17 mostrada a continuación.
Al definir este origen de datos, la propia herramienta *Visual Studio*, establece las relaciones entre cada una de las tablas de dimensiones/hechos haciendo uso de estos campos.

<table>
<thead>
<tr>
<th>DimEmpresa</th>
<th>DimArticulo</th>
<th>DimCliente</th>
<th>DimZona</th>
<th>DimProyecto</th>
<th>DimTiempo</th>
<th>FactVentas</th>
<th>FactCompra</th>
</tr>
</thead>
<tbody>
<tr>
<td>DimEmpresa</td>
<td>IDEmpresa, IDArticulo</td>
<td>IDEmpresa, IDCliente</td>
<td>IDEmpresa, IDZona</td>
<td>IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>DimArticulo</td>
<td>IDEmpresa</td>
<td>IDEmpresa, IDArticulo, IDCliente</td>
<td>IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>DimCliente</td>
<td>IDEmpresa, IDZona</td>
<td>IDEmpresa, IDCliente</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>DimZona</td>
<td>IDEmpresa, IDZona</td>
<td>IDEmpresa, IDCliente</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>DimProyecto</td>
<td>IDEmpresa, IDEmpresa, IDArticulo, IDCliente</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>DimTiempo</td>
<td>IDEmpresa, IDProyecto, IDArticulo, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>FactVentas</td>
<td>IDEmpresa, IDEmpresa, IDArticulo, IDCliente</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
</tr>
<tr>
<td>FactCompra</td>
<td>IDEmpresa, IDEmpresa, IDArticulo</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDProyecto</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
<td>IDEmpresa, IDEmpresa, IDEmpresa</td>
</tr>
</tbody>
</table>

Figura 17. Vista del origen de datos.

Figura 18. Relaciones entre dimensiones y hechos.

Haciendo uso de las 6 tablas de dimensiones previamente mencionadas (Artículo, Cliente, Empresa, Proyecto, Tiempo y Zona) y 2 tablas de hechos (Compras y Ventas), cada una de
ellas con una medida: Para compras, se miden los costes exteriores, que representan el sumatorio del campo “ImporteCompra” de la tabla de hechos de compras. Para ventas, se miden las ventas brutas, que representan el sumatorio del campo “ImporteA” de la tabla de hechos de ventas. Además, el cubo dispone de dos cálculos: Ventas Netas, que se calcula restando los costes exteriores a las ventas brutas, y Porcentaje Proyecto Cliente, que representa, para cada cliente, el porcentaje de la facturación total de ese cliente que representa lo que factura por cada tipo de proyecto. A continuación, se muestran, en las figuras 19 y 20, las sentencias MDX usadas para definir estos dos campos calculados.

Figura 19. MDX y definición de campo calculado “Ventas Netas”.

`[Ventas Netas]`

- Propiedades del miembro primario
 - Jerarquía primaria: Measures
 - Miembro primario:

- Expresión
 `[Measures].[Ventas Brutas] - [Measures].[Costes Exteriores]`

- Propiedades adicionales
 - Cadena de formato: “Currency”
 - Visible: True
 - Comportamiento si no está vacío:
 - Grupo de medida asociado: Ventas
 - Carpeta para mostrar:

- Expresiones de color:
- Expresiones de fuente
25

Figura 20. MDX y definición de campo calculado “Porcentaje Proyecto Cliente”.

Habiendo realizado esta estructura, ya se puede proceder a procesar el cubo MOLAP de clientes [5].

5.2.3. Interfaz

Una vez procesado, puede ser accedido a través de la herramienta “Solmicro Bi”, que nos permite diseñar tablas, gráficos, filtrar por segmentadores de meses/años, hacer *drill down* por dimensiones, entre otros.

A continuación, se diseñaron dos pantallas representativas de los datos de facturación de clientes. Gráficamente se muestra su aspecto en las figuras 21 y 22.

Para la pantalla resumen del cuadro de mandos, se situó un segmentador anual en la parte superior izquierda, el cual permite elegir el año por el que se filtrarán todos los datos mostrados en la pantalla.

En la parte superior derecha, se localiza un segmentador mensual, que permite elegir el mes por el que se filtrarán los datos mostrados en la pantalla, puede usarse conjuntamente con el segmentador anual.

Bajo el segmentador anual, se encuentra la tabla de ventas brutas y netas anuales (IND01), que permite visualizar las ventas brutas y netas totales separadas por año.

Justo a la derecha de esta tabla, está el gráfico de barras de ventas brutas y netas anuales (IND02), usado para visualizar lo mismo que la tabla anterior de una forma más cómoda, separando en barras rojas las ventas brutas y en barras azules las ventas netas.

Situado a su vez a la derecha del gráfico anterior, se encuentra el gráfico de barras de ventas brutas, netas y costes exteriores anuales (IND03), el cual permite visualizar lo mismo
que el gráfico anterior además de una nueva barra amarilla por cada año que representa los costes exteriores (Ventas Brutas = Ventas Netas + Costes Exteriores).

Bajo la primera tabla descrita, está la tabla de ventas brutas y netas por año/mes (IND04), donde se pueden visualizar las ventas brutas y netas totales separadas por mes.

A la derecha de la pantalla se localiza la tabla de ventas brutas y netas anuales por familia de artículo (IND05). Ésta permite visualizar las ventas brutas y netas totales separadas por año para cada familia de artículo, en este caso, las familias de artículos representan realmente tipos de proyectos sobre los que la empresa factura (mantiene el nombre de familia de artículo por el uso del estándar de la herramienta “Expertis”).

En la parte inferior izquierda, se tiene el gráfico de tarta de ventas netas por familia de artículo (IND06), que permite visualizar de forma totalizada las ventas netas separadas por cada familia de artículo (tipo de proyecto).

Por último, en la parte inferior derecha, se encuentra el gráfico de barras de ventas brutas y netas anuales por familia de artículo (IND07) donde podemos visualizar, para cada año, las ventas brutas y netas separadas por tipo de proyecto.

Figura 22. Pantalla detalle del cuadro de mandos.
En la pantalla detalle del cuadro de mandos, se situaron los mismos segmentadores que en la pantalla resumen, en la misma posición y con el mismo funcionamiento.

Bajo el segmentador anual, se encuentra una tabla de ventas brutas, netas y costes exteriores por año-trimestre-mes (IND08). Aquí pueden verse las ventas brutas, netas y costes exteriores totales separadas por año, por trimestre y por mes.

Justo a la derecha de la tabla anterior, se situó la tabla de ventas brutas, netas y costes exteriores por año-trimestre-cliente (IND09), donde visualizar las ventas brutas, netas y costes exteriores totales separadas por año, por trimestre y por cliente.

Bajo la primera tabla mencionada, se localiza el gráfico de tarta de ventas netas por cliente (IND10). Éste permite visualizar las ventas netas totales separadas por cada cliente.

A la derecha del gráfico anterior se tiene el gráfico de tarta de ventas brutas por cliente (IND11), en el que se pueden visualizar las ventas brutas totales separadas por cada cliente.

Estos dos gráficos previos no se visualizan completamente en la pantalla principal de detalles debido a la gran cantidad de clientes que se tratan de representar. Esto no es un gran problema ya que la herramienta “Solmicro BI” permite ampliar cualquiera de las tablas o gráficos a consultar, seleccionando el botón arriba a la izquierda de cualquiera de ellos. Esta ampliación puede verse ejemplificada en la figura 23 mostrada a continuación.
Figura 23. Ejemplo de ampliación de gráficos.

En el centro a la derecha de la pantalla, se localiza el gráfico de tarta de ventas brutas por zona (IND12), el cual muestra las ventas brutas totales separadas por zona (a la que pertenece cada cliente).

En la parte inferior izquierda de la pantalla, se encuentra la tabla de ventas brutas y netas por mercado (IND13), donde visualizar de forma totalizada las ventas brutas y netas por cada mercado (al que pertenece cada cliente).

Justo a su derecha, se tiene la tabla de ventas brutas y netas por zona (IND14), la cual permite visualizar de forma totalizada las ventas brutas y netas por cada zona (a la que pertenece cada cliente).

Por último, en la parte inferior derecha de la pantalla, se situó la tabla de ventas brutas, netas y porcentaje por cliente-tipo de proyecto (IND15), usada para visualizar el total de ventas brutas y netas por cada cliente y cada tipo de proyecto que se factura a este cliente, así como para cada cliente, el porcentaje de la facturación total de ese cliente que representa lo que factura por cada tipo de proyecto.
Otro control destacable de la herramienta “Solmicro BI” es el *DrillDown*.

Una vez dentro de un gráfico o tabla, haciendo clic derecho en la sección correspondiente, nos permite consultar lo mismo que se visualiza actualmente, pero navegando por datos más concretos de cada una de las dimensiones usadas. Por ejemplo, haciendo *DrillDown* por artículo para el cliente Viesgo en el gráfico de tarta de ventas brutas, visualizamos lo reflejado en la figura 24 mostrada a continuación.

![Figura 24. Ejemplo de DrillDown.](image)

Además del *DrillDown*, cabe destacar el uso de los segmentadores, pues seleccionando en cualquier dato representado, así como en los propios segmentadores de año o mes, se puede realizar un filtrado sobre datos más concretos a consultar. Por ejemplo, se realiza un filtrado en la pantalla de detalles para Madrid (seleccionando la zona en el gráfico de tarta de ventas brutas por zona) en julio de 2018 (valores seleccionados desde los segmentadores superiores), puede visualizarse el resultado obtenido en la figura 25 mostrada a continuación.
Figura 25. Ejemplo de segmentadores combinados.

Una vez definida la estructura de estas pantallas y gráficos, la herramienta Solmicro BI permite guardar el diseño en un XML para poder ser usado en cualquier otro equipo. Por lo que teniendo acceso al servidor SQL en el cual está alojado el cubo y este XML, se puede tener total control de la parte de clientes del cuadro de mandos integral [6].

5.3. Presentación y despliegue

Una vez desarrollada la carga de datos al Data Warehouse, el procesamiento del cubo de clientes y los indicadores solicitados en “Solmicro BI”, se presenta esta interfaz a la directiva de IPS-Norte, de despliegue sencillo ya que todos los equipos de la oficina están conectados al servidor donde se aloja el cubo y el diseño del cuadro de mandos es tan fácil de instalar como mover un archivo XML al equipo en cuestión y cargarlo con “Solmicro BI”, recibiendo su aprobación [8][9][10].

Durante la presentación, la directiva verificó que los datos visualizados en el cuadro de mandos eran correctos, comparando los datos con las consultas en la herramienta ERP “Expertis” como hacían habitualmente.
Una vez se validó la correcta correspondencia entre estas consultas manuales y lo mostrado en el cuadro de mandos, se dio por realizada esta implementación para la perspectiva de ventas.

6. Líneas futuras

Tras la satisfacción obtenida con el desarrollo de la perspectiva de ventas, se definieron varios indicadores que en el futuro podrían ser incluidos en el cuadro de mandos.

IND16 - Un indicador de rentabilidad de clientes cumpliendo la fórmula:

Rentabilidad Cliente = (Facturación Neta – Coste Horas Invertidas) / (Coste Horas Invertidas).

Siendo la facturación neta el total de la facturación neta procedente de todos los proyectos, sin costes exteriores y siendo el coste de horas invertidas el coste real total de las horas invertidas en el mismo periodo. Para calcular el coste hora real se obtendrá el coste de todos los indirectos (estructura y explotación) y se repartirá proporcionalmente al coste empresa de cada consultor.

Este indicador se desagregará por tipología de proyecto y se calculará con periodicidad semestral.

IND17 - Un indicador de la tasa de retención de clientes, con el fin de medir el éxito de la empresa en la fidelización de sus clientes, siguiendo la siguiente fórmula:

Retención = 100 x (Clientes Fin Periodo) / (Clientes Inicio Periodo).

Este indicador se desagregará por tipología de proyecto y se calculará con periodicidad anual.

IND18 - Tasa de adquisición de clientes, que mide el éxito de la empresa en la captura de nuevos clientes, cumpliendo la fórmula:

Adquisición = 100 x (Clientes Fin Periodo – Clientes Inicio Periodo) / (Clientes Inicio Periodo).

Este indicador se desagregará por tipología de proyecto y se calculará con periodicidad anual.

IND19 - Por último un indicador de eficacia de aprobación de ofertas comerciales presentadas a potenciales clientes de la empresa) que se calcularía según la siguiente fórmula:
Eficacia = (Propuestas ganadas) / (Propuestas presentadas).

Este indicador se desagregará por tipología de proyecto y se calculará con periodicidad anual.

Además de estos nuevos indicadores referidos a clientes o posibles clientes, quedan pendientes de añadir (aún sin definir) el tratamiento de otros KPIs relacionados con el rendimiento de trabajadores y procesos financieros.

7. Conclusiones

Este proyecto ha consistido en la realización del diseño e implantación de un cuadro de mandos integral con el fin de explotar la información de la empresa solicitante guardada diariamente en base de datos a través de una herramienta ERP, de manera que esta misma directiva pudiera tener una visión global de la situación de la empresa dinámicamente y por medio de una interfaz sencilla y fácil de interpretar.

Cabe destacar el éxito del proyecto en cuanto a satisfacción de la empresa solicitante, pues el desarrollo comenzó con menos jornadas de formación impartidas de las esperadas y los resultados fueron correctos según las primeras pruebas realizadas, por lo que la empresa ha aceptado el despliegue inmediato del cuadro de mandos en su entorno de trabajo.

Personalmente, este proyecto ha servido para ampliar mis conocimientos sobre Business Intelligence de forma muy positiva y útil dentro del entorno de trabajo en el que me encuentro actualmente, pues partí de apenas tener conocimientos en este campo a poder aplicar lo que sé actualmente en proyectos reales de la empresa.
8. Bibliografía

[3]. Solmicro. *Solmicro BI. Formación para el Usuario [Vídeo]*.
[4]. Solmicro. *Solmicro BI. Formación para el Administrador [Vídeo]*.
[5]. Solmicro. *Solmicro BI: Analysis Services & Integration Services [Vídeo]*.
[6]. Solmicro. *Solmicro BI: Formación Avanzada [Vídeo]*.
[7]. Solmicro. *Arquitectura de Solmicro BI [Vídeo]*.
[8]. Solmicro. *Esquema de Instalación [Vídeo]*.
[9]. Solmicro. *Instalación Básica / Comercial [Vídeo]*.
[10]. Solmicro. *Instalación Completa / Cliente [Vídeo]*.