INTRODUCTION

Zinc Finger of the Cerebellum genes (ZIC)
- Family of Transcription Factors (TFs) sharing 5 highly conserved Cys2His2-zip Zinc Fingers.
- Perform functions at early and late stages of neural development.

ZIC2 associated holoprosencephaly (HPE)
- HPE is the most common brain congenital malformation (1/2000 conceptuses): incomplete cleavage of the prosencephalon affecting the correct separation of the two brain hemispheres and facial structures.

Mouse embryonic stem cells (mESCs) as a tractable in vitro model
- Strong points:
 - Retention of high amount of cells required for different genomic approaches such as RNA-seq or Chromatin Immunoprecipitation Sequencing (ChIP-seq)
 - No ethical restrictions
 - Easy to modify genetically to model a broad range of diseases

ZIC2 as a Transcriptional Regulator

RESULTS

3.1. Zic2 knock-out leads to an upregulation of dorsal genes and a downregulation of ventral ones in AntNPCs.

3.2. Generation of Zic2-Flag-HA tagged cell lines by CRISPR-Cas9

3.3. FH6 mESC line shows similar Zic2 expression levels than WT mESC line

3.4. FH6 mESC line is valid for Zic2 ChIP

CONCLUSIONS

- The loss of ZIC2 disrupts dorsalventral patterning during the differentiation of mESCs into AntNPCs.
- In our in vitro differentiation model, Zic2 knock-out leads to a drastic downregulation of roof plate markers Lmx1a and Lmx1b in AntNPCs.
- The generated Zic2-Flag-HA tagged mESC line (FH6) can be used as an important tool to investigate ZIC2 function using various experimental approaches (ChIP, IP).

PERSPECTIVES

Integration of data obtained from different global approaches in order to...

- RNA-seq
- ZIC2 ChIP-seq
- Histone marks ChIP-seq
- Immunoprecipitation-Mass Spectrometry (IP-MS)

...obtain a complete picture of ZIC2 function during neural differentiation.