The carbon footprint of power-to-synthetic natural gas by photovoltaic solar powered electrochemical reduction of CO$_2$

Antonio Dominguez-Ramos, Angel Irabien

PII: S2352-5509(18)30211-2
DOI: https://doi.org/10.1016/j.spc.2018.11.004
Reference: SPC 186

To appear in: Sustainable Production and Consumption

Received date: 31 May 2018
Revised date: 30 October 2018
Accepted date: 5 November 2018

Please cite this article as: The carbon footprint of power-to-synthetic natural gas by photovoltaic solar powered electrochemical reduction of CO$_2$. Sustainable Production and Consumption (2018), https://doi.org/10.1016/j.spc.2018.11.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
The carbon footprint of Power-to-Synthetic Natural Gas by Photovoltaic solar powered Electrochemical Reduction of CO₂

Antonio Dominguez-Ramos, Angel Irabien
Departamento de Ingenierías Química y Biomolecular, ETS Ingenieros Industriales y de Telecomunicación, Universidad de Cantabria, Avda. Los Castros, s.n., Santander, 39005, Spain
Corresponding author: domingueza@unican.es, telephone: +34 94 201 474

Abstract

The search for more sustainable production and consumption patterns implies the integration of emerging edge-cutting technologies in the frontier research. However, holistic studies are needed in order to evaluate properly the environmental competitiveness of the suggested solutions. In this work, we use the Power-to-Gas approach to analyse the environmental rationality in terms of the carbon footprint (CF) of a Photovoltaic (PV) solar powered Electrochemical Reduction (ER) process for the utilisation of CO₂ as carbon source for the production of CH₄. This synthetic natural gas is ready to be injected into the transmission and distribution network. The raw materials for the process are a source of CO₂ (mixed with different ratios of N₂), H₂O and electricity from PV solar. The separated products are CH₄, C₂H₄, H₂/CO, O₂ and HCOOH. The reaction, separation/purification and compression stages needed to deliver commercial distributable products are included. Mass and energy balances were used to create a black-box model. The input to the model is the faradaic efficiency of best cathodes performing at lab-scale (over 60% faradaic efficiency towards CH₄) and its cathodic potential. Long-lasting cathodes were assumed. The output of the model is the distribution of products (related to 1 kg of pure CH₄) and the energy consumption at each of the mentioned stages. These energy consumptions are used to calculate the overall CF depending on the CF of the PV solar reference chosen.

The influence of the purity of the CO₂ stream used was analysed together with the conversion of the CO₂ in the reactor, showing the high contribution (over 60%) of the ER reaction stage even if diluted CO₂ is used. When a CO₂ conversion of 50% is chosen together with an inlet stream with a N₂:CO₂ ratio of 24, the electricity consumption of the process is between 2.6 and 6.2 times the minimum obtained for a reference ER
reactor including the separation and compression of gaseous products (18.5 kWh·kg⁻¹ of CH₄). The use of PV solar energy with low CF (14·10⁻³ kg·kWh⁻¹) allows the current lab-scale performers to even the CF associated with the average world production of natural gas when the valorisation of C₂H₄ is included (~1.0 kg·kg⁻¹ of C₂H₄).

Keywords
Electrochemical reduction; Power to gas; carbon footprint; PV solar energy; life cycle assessment;

Highlights
The carbon footprint (CF) of a PV solar powered electro-reduction for CH₄ was analysed. All relevant stages as reaction, separation of CO₂ and CH₄ and compression are included. Between 2.6 and 6.2 times is the current electricity consumption compared to reference conditions. The main contribution in CF terms is the reaction stage. The CF of best performer can even the CF of the existing process for CH₄.
1. Introduction

The 2030 Agenda for Sustainable Development is “...a plan of action for people, planet and prosperity” (United Nations, 2015). This global agenda includes a set of 17 Sustainable Development Goals, with the purpose of guiding international/national/local development policy actions towards the fulfilment of those goals and their individual corresponding 169 targets in 2030. Energy, as a basic element of human prosperity, and its environmental consequences are featured in several goals: 7 (“ensure access to affordable, reliable, sustainable and modern energy for all”), 12 (“ensure sustainable consumption and production patterns”), and 13 (“take urgent action to combat climate change and its impacts”). To reach such global goals highlighting the intimate relationship of energy and Climate Change, and, in parallel with the on-going massive integration of renewable sources in the power sector, a form of storing energy is necessary due to the intermittent and stochastic behaviour of wind and solar irradiation.

Electricity, as a form of energy, can be directly stored as electrical charges and indirectly as kinetic, potential or chemical/electrochemical energy (Dunn et al., 2011; Liu et al., 2010; Yang et al., 2011). In this work, the focus is upon the potential interactions as an energy storage between the electrical grid or power network (electricity) and the natural gas (NG) pipeline network (heating services/commodity/transportation) through the well-known Power-to-Gas technologies, which has gathered a noticeable interest recently (Bailera et al., 2017; Götz et al., 2016; Mazza et al., 2018).

The European Power-to-Gas Platform defines Power-to-Gas (PtG) as “the functional description of the conversion of electrical power into a gaseous energy carrier like e.g. hydrogen or methane” (European Power to Gas Platform, 2018). Hereafter, as the target product in this study is CH4, it will be used preferentially the title of Power-to-Synthetic Natural Gas (PtSNG). Thanks to the PtSNG, the excess of intermittent renewable sources can be stored as CH4 without using the mediation of electrolytically produced H2 as energy carrier for the methanation of CO2. In this sense, the current adopted approach seems to rely on the participation of H2 as intermediate to produce the CH4 by methanation (Schiebahn et al., 2015).

Carbon Capture and Use (CCU) of CO2 can be understood as the transformation of CO2 into valuable chemicals or fuels, trying to widen the portfolio of technologies at the gigatonne scale (Majumdar and Deutch, 2018). There is a myriad of technological
options to proceed with a transformation from such a very stable molecule (Appel et al., 2013; Dimitriou et al., 2015; Kondratenko et al., 2013). Among all potential routes, we do propose here the Electrochemical Reduction (ER) of CO₂, a technology that has received a lot of attention in the past decade (Jhong et al., 2013; Kenis et al., 2017; Whipple and Kenis, 2010; Zhang et al., 2018). Thanks to this technology, CO₂ has been successfully reduced at lab-scale to other forms such as CH₃OH (Albo et al., 2017, 2015; Goeppert et al., 2014; Lee et al., 2016; Merino-Garcia et al., 2017; Olah et al., 2009; Sebastián et al., 2017; Zhao et al., 2017), CO (Hernández et al., 2017; Kas et al., 2016; Khezri et al., 2017; Rosen et al., 2011; Ross et al., 2017), HCOOH (Alvarez-Guerra et al., 2014; Del Castillo et al., 2015, 2017; Cao et al., 2016; Kopljar et al., 2016; Lee and Kanan, 2015; Li and Oloman, 2005; Min and Kanan, 2015; Natsui et al., 2018; Oloman and Li, 2008; Scialdone et al., 2016; Yang et al., 2017; S. Zhang et al., 2014; Zhu et al., 2016), and of course, CH₄ (Cook, 1988; DeWulf et al., 1989; Hori et al., 2002, 1986; Kaneco et al., 2006; Manthiram et al., 2014; Merino-Garcia et al., 2017, 2016; Varela et al., 2016; Weng et al., 2018) thanks to an applied voltage when proper well-tuned catalytic electrodes are used (Qiao et al., 2014). The ER process will then demand the mentioned CO₂ as C source; a “cheap” source of protons, mainly from water; and renewable electricity for the power demanded by the entire process, in which the electrochemical reactor can play a major role. The reference renewable source of choice in this work is Photovoltaic (PV) solar energy due to the expected main contribution to global energy demand (Breyer et al., 2017), making this technology the only one on track of its International Energy Agency Sustainable Development Scenario (International Energy Agency, 2018).

Of course, the ER of CO₂ is not free of disadvantages. Three key issues must be highlighted here. The first issue is the fact that the reduction does not provide a pure targeted product but a mixture of them (Greenblatt et al., 2018) due to the existence of parasitic parallel reactions. Consequently, additional energy penalties are encountered. The second is the fact that the cathode lifetime is still a technical circumstance as the desired efficiency only last in the range of hours under current developments (Martin et al., 2015). Thirdly, the reduction process is evidently a huge energy consumer, as the oxidation reaction must be turned back to a reduced carbon state.

Figure 1 presents the framework of the present study. The CO₂ from point sources such as the power sector or any other industrial process can be returned to the production of SNG and other products from ER such as C₂H₄, being powered by the
excess of PV solar energy that is not accepted in the power network. In turn, this SNG can used in the power sector adding extra flexibility to the operation of both networks. This is the reason behind SNG must not be conceived as a fossil fuel but as a renewable fuel as the source for its production is based on renewable sources such as PV solar. Saving of natural resources such as NG is possible as SNG is injected in the NG network, partially avoiding the extraction of NG from wells. Therefore, we do coin here the term artificial CO₂ sink due to the production of SNG instead of the direct release of CO₂ to the atmosphere. To be a true artificial sink, the connection of the ER to renewable low carbon sources of electricity such as PV solar is necessary. The only CO₂ losses comes from the use of the NG at places in which the conversion is not possible (homes, buildings, automobile, small factories, etc.). The followed approach is in line with similar views for the CCU in which the connection to renewable sources is essential (Abanades et al., 2017) or the production of more than one single product is considered (Fernández-Dacosta et al., 2018).

The carbon footprint of the SNG production CF_{CH4} will be determined by two terms: i) the energy consumption of the different individual process stages, and ii) its corresponding carbon footprint. The renewable energy sources has its own carbon footprint derived from the required infrastructure. The threshold for the acceptable carbon footprint of those renewable sources of electricity is described in this work. The benchmark for the comparison is the average world distribution of NG, which is also depicted in Figure 1. The possibility to “electrify” a chemical process is a competitive advantage versus other thermochemical based approaches (Schiffer and Manthiram, 2017). All the emissions of CO₂ from the chosen source are avoided due to the in-situ transformation, thus there is a strong argument to be considered as a mitigation alternative.
Figure 1. Framework of the Power-to-Synthetic Natural Gas (PtSNG) by means of Electrochemical Reduction (ER) of CO₂ from point sources using PV solar.
Undoubtedly, the quantification of the carbon footprint of any technology strongly relies on the Life Cycle Assessment (LCA) tool, in order to guarantee that every single involved process is accounted for (Finnveden et al., 2009), even more in the case of CCU (Cuéllar-Franca and Azapagic, 2015). The impact category of choice is Global Warming, which has been already referred in this work as carbon footprint (CF). The utilization of CO₂ by the PV solar powered ER from any point CO₂ source does not mean that the CO₂ is removed from the atmosphere, which is a relevant flaw (von der Assen et al., 2013), but the fate of that CO₂ determines its actual contribution to Global Warming. A detailed review of the application of LCA for the conversion of CO₂ by different catalytic routes can be found in the literature (Artz et al., 2018). Specific literature regarding the application of LCA to PtG can be also identified recently (Collet et al., 2017; Parra et al., 2017; Reiter and Lindorfer, 2015; Sternberg and Bardow, 2016; Zhang et al., 2017).

To understand the goal and scope of this work, a simple but effective rationality of using renewables sources of electricity for the PtSNG by ER is given next. The reference theoretical production (no overpotential, 100% Faradaic Efficiency (FE), water oxidation at the anode) of CH₄ by ER requires a minimum specific energy consumption of $SEC_{CH_4} = 14.2 \text{kWh} \cdot \text{kg}^{-1}$ of CH₄. The PV solar energy has a carbon footprint (CF_{PV}) which belongs to the range between a low value $CF_{PV,L}$ of $14 \cdot 10^{-3}$ kg CO₂-eq.\cdotkWh$^{-1}$ and a high value $CF_{PV,H}$ of $58 \cdot 10^{-3}$ kg CO₂-eq.\cdotkWh$^{-1}$ for the year 2010 (Hertwich et al., 2015). Consequently, the reference production of CH₄ means that the use of the PV solar powered ER would lead eventually to a net release of 0.2 kg CO₂-eq.\cdotkg$^{-1}$ of CH₄ if the low value is considered. This value is below the carbon footprint of the actual world average natural gas distribution CF_{Eco-NG} at 0.46 kg CO₂-eq.\cdotkg$^{-1}$ of CH₄ (Ecoinvent, 2017), which account for CH₄ losses and CO₂ emissions along the transmission and distribution network. Missing the current technical developments therefore can help in elucidating wrong conclusions. Indeed, the CF_{PV} is expected to be ultra-low by 2050 ($5 \cdot 10^{-3}$ kg CO₂-eq.\cdotkWh$^{-1}$) as stated in (Pehl et al., 2017), which in turn will make the PV solar powered ER to provide CH₄ with a value as low as 0.071 kg CO₂-eq.\cdotkg$^{-1}$ of CH₄. It is the ER the technology that get benefits of the developments in the clean power field.
Table 1. Comparison of techno-environmental-economic studies of the electrochemical reduction of CO$_2$ to different products. Topic related studies for the capture of CO$_2$ are also included for reference purposes. ER stands for Electrochemical Reduction, SEP for Separation, FT for Fischer-Tropsch, FE for Faradaic Efficiency, PV for Photovoltaic, MEA for Monoethanolamine, DAC for Direct Air Capture, PSA for Pressure Swing Adsorption.

<table>
<thead>
<tr>
<th>Sustainability pillars</th>
<th>Stages</th>
<th>ER</th>
<th>SEP of CO$_2$ products</th>
<th>SEP of ER products</th>
<th>Distribution of gaseous ER products</th>
<th>Life Cycle Integration of renewables</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work Carbon Footprint</td>
<td>No</td>
<td>CH$_4$, C$_2$H$_4$, H$_2$, HCOOH (cathode) and O$_2$ (anode).</td>
<td>Unconverted CO$_2$ in the ER reactor</td>
<td>Based on the approach given by (House et al., 2011). Including distillation of HCOOH/water distillation</td>
<td>Compress ion of gaseous products</td>
<td>Updated Carbon footprint of the electricity used and integration of all stages to provide a commercial product</td>
</tr>
</tbody>
</table>
| Li et al. (2016) Carbon Footprint | Levelize cost of the fuel | CO (for later diesel production from FT processing + external | Analysis of the effect of FE, current density and cell voltage | Unconverted CO$_2$ in the ER reactor by PSA | No needed | Well-to-gate CO$_2$ | High performance scenario (zero emissions from the
<table>
<thead>
<tr>
<th>Study</th>
<th>Electrolysis Method</th>
<th>ER Products</th>
<th>Analysis</th>
<th>FE, Current Density</th>
<th>CO₂ Capture and Purification</th>
<th>CO₂ Source</th>
<th>Energy Demand</th>
<th>CO₂ Source</th>
<th>Embodied Energy</th>
<th>Value Chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Verma et al., 2016)</td>
<td>Gross-margin model of ER products</td>
<td>HCOOH, CO, CH₃OH, CH₄, C₂H₄, C₂H₅OH</td>
<td>Analysis of the effect of cell voltage, FE, and current density</td>
<td>Based on Sherwood plot (for cost calculations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Jouny et al., 2018)</td>
<td>Brief mention to carbon footprint</td>
<td>Net Present Value of ER products</td>
<td>CH₃CH₂CH₂OH, HCOOH, CO, C₂H₄, C₂H₅OH, C₂H₆, CH₃OH</td>
<td>Product selectivity, cell voltage and current density (base and optimistic case)</td>
<td>Distillation for HCOOH/H₂O mixtures</td>
<td>CO₂ capture and purification (by MEA or DAC)</td>
<td></td>
<td>CO₂ in the ER reactor (by PSA)</td>
<td>Neglected</td>
<td>Brief mention to PV solar and wind energy for the electricity consumption</td>
</tr>
<tr>
<td>(Greenblatt et al., 2018)</td>
<td>Energy demand</td>
<td>No</td>
<td>CO, HCOOH, CH₃OH, CH₄, C₂H₆, C₂H₅OH, CH₂OH, CH₆, CH₃OH</td>
<td>No</td>
<td></td>
<td>A detailed and vast list of options is included along with the energy requirements</td>
<td></td>
<td></td>
<td>Embodied energy of the solvents and polymers (membrane) used</td>
<td>Photo electrochemical integrated system</td>
</tr>
<tr>
<td>(Agarwal et al., 2011)</td>
<td>Net Present Value</td>
<td>HCOOH/HCOO⁻</td>
<td>Electricity consumption, catalysis lifetime and</td>
<td>Not mentioned</td>
<td>Not mentioned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brief mention to PV solar and wind energy</td>
</tr>
<tr>
<td>(Chen and Lin, 2018)</td>
<td>Carbon Footprint</td>
<td>No</td>
<td>All conventional ER products</td>
<td>Electricity consumption based on the cell current efficiency and peripheral sources (electrolytes, auxiliary operations, and infrastructure)</td>
<td>No</td>
<td>Not included</td>
<td>CO₂ contribution of peripheral sources (electrolytes, auxiliary operations and infrastructure)</td>
<td>The use of fossil fuel power is justified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>----</td>
<td>-------------------------------</td>
<td>---</td>
<td>----</td>
<td>-------------</td>
<td>---</td>
<td>---------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Spurgeon and Kumar, 2018)</td>
<td>Cost of produced fuel</td>
<td>HCOOH, C₂H₅OH, and C₁₀H₂₀ by FT processing (through CO)</td>
<td>Analysis of the effect of FE, current density, and cell voltage</td>
<td>CO₂ capture and purification (by MEA) Unconverted CO₂ in the ER reactor (by PSA)</td>
<td>Not included</td>
<td></td>
<td>Brief mention to PV solar and wind energy for the electricity consumption</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thereupon several studies have been published regarding the techno-environmental-economic feasibility of the ER to several products. Table 1 aims at the comparison of the main issues in order to identify existing gaps of the previous approaches. As it can be seen in Table 1, studies were limited at some point on their scopes regarding the impact of the electricity source, the CO₂ source and the integrated individual stages requested for the manufacture of commercial products from an ER process (reaction and separation/purification). The novelty of this work relies thus on the simultaneous consideration of all the relevant individual stages coupled to an ER process (upstream processing, reaction and downstream processing) considering the top performance lab-scale data of updated references for the PtSNG by PV solar powered ER of CO₂ under a life cycle approach. The economic assessment is out of the scope of this work. The readers are referred to the papers in Table 1 for additional information on techno-economic studies.

Therefore, the goal of this work is to analyse the environmental rationality in terms of Carbon Footprint (CF) behind using low carbon electricity sources such as Photovoltaic solar (PV) for a Power-to-Synthetic Natural Gas (PtSNG) process based on the Electrochemical Reduction (ER) of CO₂. This vision leads to the saving of a natural resource such as natural gas (NG). This way, NG is not extracted from nature anymore. Simultaneously, there is a net reduction of emissions of CO₂ due to its use as raw material from the very source due to the utilization of technology that allows the electrification of the overall process. The scope of this work considers a PtSNG process in which the influence of the upstream processing (purity of the CO₂ source and CO₂ conversion), the reaction stage (faradaic efficiency and cathode potential) and the downstream processing (separation of unreacted CO₂ and diluting N₂, separation/purification of ER products and compression to commercial distributable conditions) is discussed. The best performance lab-scale data with a Faradaic Efficiency \((F_{E\text{CH}_4}) \) over 60% to CH₄ is used as basis for the ER stage. Mass and energy balances are applied to each individual stage. The reference used is the production of 1 kg of pure CH₄ ready for injection in the NG network.
2. Methodology

The CF$_{CH_4}$ of the PV Solar powered ER to CH$_4$ requires first the definition of the boundaries of the process. Figure 2 shows the process flow diagram chosen in this study. The core of the process is the ER reactor. Additional stages for the separation of gas and liquid products as well as for gas compression are also added. Output gaseous products are high-purity CH$_4$, C$_2$H$_4$, H$_2$ (combined with CO as syngas when corresponding) and liquid 85% wt. HCOOH (in water) from the catholyte. Gaseous O$_2$ is produced in the anolyte. Sources with different CO$_2$ purity (due to the presence of N$_2$) are considered. Water is used as a source of protons. Thus, the inlet streams are CO$_2$/N$_2$ mixtures and water. The influence of the purity of the CO$_2$ used as raw material under different conversions in the reactor (upstream processing) and the effect of the faradaic efficiencies and cathode voltage U_C obtained in current top performer electrodes at lab-scale (reaction) are covered within this study. Separation and compression of the obtained gaseous products as well as purification of the liquid product (downstream processing) is also included.

Regarding the modelling of the process, steady state conditions are assumed. To check the validity of results, mass balances were completed for the i products (CH$_4$, C$_2$H$_4$, H$_2$, CO, HCOOH and O$_2$), that inputs are balanced with the outputs for the j existing streams. Individual k stages are modelled as black-boxes. The input data is reported in Table 2 as the set of faradaic efficiencies of the i^{R} reduction products (CH$_4$, C$_2$H$_4$, H$_2$, CO, HCOOH) $E_{i^{R}}$ for the considered studies of reference as top performers at lab-scale. Additionally, a set of different parameters (e.g. temperature of reference T_{REF}) and process conditions (such as the CO$_2$ conversion per pass X_{CO_2}) are also used as input data. The output data from the model is the amount of mass of each i product m_i and the energy consumption in each k stage E_{C_k}: reaction, separation of CO$_2$/N$_2$, separation of CH$_4$ and the other gaseous products, compression (as electricity), and distillation (as heat) per unit of mass of CH$_4$. The mixing stage prior to the reaction and the gas/liquid separator have no energy consumption. The output data of the model (m_i and E_{C_k}) is used in combination with reported carbon footprint data of the PV solar energy (CF_{PV}) to transform the required amount of electricity/heat into the overall carbon footprint CF_{CH_4} measured as mass of CO$_2$-eq. per unit of mass of CH$_4$ (kg·kg$^{-1}$). The carbon footprint associated to the infrastructure required for the process is
neglected due to the low stability of the electrodes, which is true not only for the production of CH$_4$ but for other ER products (Martin et al., 2015). Otherwise, the CF_{CH_4} would be so high that it will dwarf the contribution of the different processing stages. Long-lasting cathodes are considered here.

2.1 Upstream processing: Purity of the CO$_2$ source

In order to take into account the potential effects of the purity of the CO$_2$ source over the entire process, different molar ratios CO$_2$/N$_2$ as feed to the ER were used. The values of the molar fractions of the CO$_2$/N$_2$ mixtures used here are representative from different industry sectors (Bains et al., 2017), trying to cover the full range of CO$_2$ concentrations.

2.2 Reaction: Electrochemical reactor operating conditions for top performers at lab-scale

The ER reactor, which industrially would be conceived as a set of cell stacks, is assumed here as a divided cell (two separated compartments). In the catholyte, the ER of CO$_2$ delivers several i^R reduction products in a gaseous form: CH$_4$, C$_2$H$_4$, H$_2$, CO and one a liquid form, HCOOH. In the anolyte, the only i^O oxidation product is gaseous O$_2$. The product distribution in the cathode depends on the faradaic efficiency for each i^R product FE_{i^R}. Due to be independent compartments, the catholyte is conducted to a gas/liquid separator; this way, the liquid phase is subjected to an additional distillation process and the gas phase to further processing. The first downstream processing consist on the separation of the CO$_2$ and the N$_2$ from the other gaseous products of the reactor. The CO$_2$ that reaches the separation unit is the unconverted CO$_2$ from the ER reactor, while N$_2$ comes from the CO$_2$ source (it is assumed that it does not participate in the reaction). As hypothesis, wherever the molar fraction of N$_2$ is, there is no influence on the kinetics of the process, thus the direct consequence is an additional separation energy cost in the corresponding separation stage.

Table 2 summarizes the current top lab-scale performance for the ER of CO$_2$ to CH$_4$ under the experimental conditions that provides the maximum FE_{CH_4} value. Selected references display FE_{CH_4} over 60%. In this work, it is hypothesized that the lifetime of the electrode or its performance remains stable for a set of hours large enough, thus its carbon footprint can be neglected. Some of the references used in this work here did not
stated explicitly the stability of the electrode, but it can elucidated that they typically last less than 2 hours. This short electrode stability is coherent compared to other values previously reported even for other ER products (Martin et al., 2015). Indeed, progress is on-going as available CO₂ electrolyzers report voltage increases as low as ~0.10⁻⁶ V·h⁻¹ (Dioxide Materials, 2018). Working with the chosen electrodes is only possible under the hypothesis of long-lasting electrodes. The chosen metal for the ER of CO₂ to CH₄ is Cu, with a clear temporal trend from foil sheets to nanoparticles. Theoretical calculations on the higher yields of CH₄ and C₂H₄ yields on Cu over CH₃OH were recently proposed (Hussain et al., 2018). The current density \(CD \) values are moderate, ranging from 5 mA·cm⁻² to 22.7 mA·cm⁻². On the other hand, the cathode potential \(U_c \) ranged from -3.8 V vs NHE to -1.35 V vs NHE, still away from the theoretical minimum cathode voltage of 0.169 V vs NHE (Ganesh, 2016). Typical electrolyte for the reduction is KHCO₃ in concentrations ~0.1 mol·L⁻¹. In order to reduce the complexity of the separation process, it is assumed that electrolytes can be perfectly recirculated. The effect in the ER process of the electrolyte consumption is studied from an economic point of view in (Agarwal et al., 2011). When data is not presented for the all the \(i^R \) species, a round up was used to present a 100% faradaic efficiency as summation of the \(FE_{i^R} \) of each of the first \(i^R \) products (Pander III et al., 2017). If the \(FE_{i^R} \) for a \(i^R \) product is not stated explicitly, 1% \(FE_{i^R} \) is assumed as a default value. The \(FE_{CO} \) is relatively low, with the exception of 15% from (Kaneco et al., 1999). For this particular reference, it is evident that syngas (H₂/CO) is produced instead of H₂ as pure product. H₂ and CO are considered as individual product for the sake of calculations but they are not separated in the later stages.

The conversion of CO₂ per pass through the ER reactor \(X_{CO}_2 \) is assumed to be established at 50% (Jouny et al., 2018). When the influence of \(X_{CO}_2 \) is studied, the lower range reported by (Jouny et al., 2018) of 10% is considered. We did assume a maximum conversion of 99%. Other potential conversion values of 25%, 50% and 75% were mentioned in (Spurgeon and Kumar, 2018). Because of the recirculation, all the CO₂ at the source is consumed within the boundaries of the process, thus no CO₂ is finally released.

One of the key elements of the process is the assessment of the Specific Energy Consumption of each \(i^R \) reduction product \(SEC_{ER-i^R} \) (kWh·kg⁻¹), which is defined as follows in Eq. 1:
\[\text{SEC}_{\text{ER}^R} = \frac{n_iR|U_C - U_A|}{3600 \cdot MW_{iR} \cdot \left(\frac{FE_{iR}}{100} \right)} \]

Eq. 1

where \(n_i \) is the number of moles of electrons involved in the reaction (8 for CH\(_4\), 12 for C\(_2\)H\(_4\), 2 for H\(_2\), 2 for CO, and 2 for HCOOH); \(F \) is the Faraday constant (96,485 C·mol\(^{-1}\) electrons); \(U_C \) is the cathode potential (V vs NHE); \(U_A \) is the anode potential (V vs NHE); and \(MW_{iR} \) is the molecular weight of the \(i^R \) product (g·mol\(^{-1}\)). The cathode potential values \(U_C \) are reported in Table 2 for each selected reference. The values for \(U_A \) are derived from the minimum theoretical potential for the oxidation of water at 1.23 V vs NHE (at a pH value of 0) plus a typical reference overpotential at 0.5 V (Jouny et al., 2018; Kauffman et al., 2015). Assuming the use of high concentrated KOH solution in the anolyte compartment, a very high pH around 14 can be used thus -0.0592 V were subtracted per unit of pH, rendering a total value of \(U_A \) at 0.90 V. Additional potential losses from electrolytic compartments and separation membranes are neglected. Further work is envisaged to quantify this contribution, so the total cell potential is below the maximum expected real value.

The overall basis for the calculation is 1 kg of CH\(_4\), thus \(EC_{\text{ER}^R-\text{CH}_4} \) is the energy consumption used in the ER reaction stage. In order to quantify the relative production of the reduction products \(m_i \), the total amount of electricity for the production of CH\(_4\) is used, along with its \(\text{SEC}_{\text{ER}^R-\text{CH}_4} \) according to Eq. 2:

\[\frac{\text{SEC}_{\text{ER}^R-\text{CH}_4}}{\text{SEC}_{\text{ER}^R-\text{CH}_4}} = \frac{m_{\text{CH}_4}}{m_{iR}} \]

Eq. 2

The stoichiometric amounts of CO\(_2\) and H\(_2\)O are included as inputs in the process. Consumption of CO\(_2\) takes place in the cathode for the different reduction reactions. Consumption of H\(_2\)O does in the anode for the oxygen evolution reaction. The H\(_2\)O used for the liquid phase of the catholyte is also included (derived from using a liquid phase for the reduction).

2.3 Downstream processing
2.3.1 Gas and liquid streams separations

The catholyte from the ER reactor has two phases. The liquid phase corresponds to the HCOOH formed alongside with the H2O that forms the catholyte. We used a ratio of 10 moles of water per mole of HCOOH, as it is not possible to obtain a better figure from current references due to the low homogeneity of the experimental set-up. The k^T thermal energy consumption for the distillation process of the azeotropic H2O-HCOOH mixture E_{DIST} (kJ) needed for the purification of HCOOH up to the commercial purity of 85% wt. was obtained in a previous work (Dominguez-Ramos et al., 2015). The amount of H2O could be potentially headed back to the ER reactor. If heat (as steam) is industrially sourced from natural gas, the corresponding carbon footprint of the used heat CF_{Heat} is $123\cdot10^{-6}$ kg·kJ⁻¹, which is derived from (Ecoinvent, 2017).

A pure stream of O2 is obtained at the anode of the reactor. The separation of the i^R products from the gaseous stream from the cathode results into three streams. One of those streams is the unconverted CO2, which is mixed back prior to entering the ER reactor. The second stream is the one containing N2, which is accompanied by the residual amount of O2 from the reduction to CO, which is purge out of the system. The third stream includes all the valuable products. The separation of these three gaseous products takes place in a similar separation process, which includes CH4, C2H4, H2/CO (in a ratio that depends on each reference). Expected purities of the products are summarised in Table 1 of the SI (syngas is modelled as pure H2). It is assumed that the energy consumption for the k^{NT} non-thermal separation process (SEP-CO2 and SEP-CH4) regarding the i^R reduction gaseous product $E_{k^{NT}}$ (kJ) are based on the minimum thermodynamic energy consumption based on the mixing entropy according to Eq. 3:

$$EC_{k^{NT}} = \frac{100}{R} \sum_{j \in f^{NT}} v_{j^{NT}} \left[n_{j^{NT}} \sum_{i \in k^{NT}} x_{i^{k^{NT}}j^{NT}} \ln \left(x_{i^{k^{NT}}j^{NT}} \right) \right]$$

Eq. 3

Where R is ideal gas constant ($8.314\cdot10^{-3}$ kJ·mol⁻¹·K⁻¹); T_{REF} is the reference temperature (298.15 K); $v_{j^{NT}}$ indicates whether the stream is an input (+1) or output (-1); $n_{j^{NT}}$ is the total molar amount of the j^{NT} streams associated with the k^{NT} non-thermal separation process; and $x_{i^{k^{NT}}j^{NT}}$ is the molar fraction of the $i^{k^{NT}}$ product in...
the j^{kNT} stream. Molar fractions are used instead of fugacity coefficients due to the ideal assumed behaviour (Y. Zhang et al., 2014). f_{kNT} is a correction factor to transform the ideal minimum thermodynamic values into real-world energy consumption. For the energy separation of the CO$_2$/N$_2$ mixture EC_{SEP-CO_2} a f_{SEP-CO_2} value of 15 was used. In turn, for the energy separation of the CH$_4$/C$_2$H$_4$/H$_2$/CO mixture EC_{SEP-CH_4}, a more conservative value for the separation f_{SEP-CH_4} equal to 5 was used. These two f_{kNT} values were adopted from the work from (House et al., 2011) for similar separations. No enthalpy of mixing was added (Greenblatt et al., 2018).

2.3.2 Compression of gaseous products

In order to distribute a commercial product, a final stage of compression is needed for all the obtained gaseous j^G products (the purified CH$_4$, C$_2$H$_4$, H$_2$/CO plus the O$_2$). Table 1 of the SI provides the conditions for pressure and temperature conditions and its corresponding phase. A set of own simulations in Aspen Plus (Aspen Tech, 2018) were used to estimate the specific energy consumption for the compression of the gaseous products SEC_{COMP}^{jG} (kWh·kg$^{-1}$). For O$_2$, the $SEC_{COMP}^{O_2}$ value from (Singla and Chowdhury, 2017) was used instead. The values provided are in the order of magnitude of similar references. As it can be seen in Table 1 of the SI, different pressures and temperature conditions lead to different phases. The main targeted product here (CH$_4$) was compressed up to 97 bar to be directly injected in the natural gas network thus density can reach a value of 71 kg·m$^{-3}$. Procedures or combination for the simultaneous injection of CH$_4$/H$_2$ mixtures are out of the scope of this work.

2.4 Calculation of the carbon footprint

The calculation of the carbon footprint derived from the production of 1 kg of CH$_4$ plus the additional products CF_{CH_4} (expressed as kg of CO$_2$-equivalent per kg of CH$_4$) is quantified as follows in Eq. 4:

$$CF_{CH_4} = CF_{pv} \left[\sum_{k^E} EC_{k^E} \right] + CF_{Heat} \left[EC_{DIST} \right] \quad \text{Eq. 4}$$

Where k^E is the set of the k stages supplied by electricity (ER-CH$_4$, SEP-CO$_2$, SEP-CH$_4$ and COMP). Consequently, different CF_{pv} for the PV solar energy will provide
different values for the CF_{CH_4}. In case the contribution of EC_{DIST} is disregarded, the second term in the previous summation is simply neglected. The output of the model provides the values for EC_{ER-CH_4}, EC_{SEP-CO_2}, EC_{SEP-CH_4}, EC_{COMP} and EC_{IST}.
Figure 2. Process flowsheet diagram for the PV solar powered Electrochemical Reduction of CO₂ to Synthetic Natural Gas (PtSNG).
Table 2. Selection of top lab-scale performers for the ER of CO$_2$ to CH$_4$ ordered according to the reported best value for $F_{E_{CH_4}}$. For a more detailed description of products obtained, duration of electrodes and their preparation, the reader is referred to the original references.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of copper used as cathode</th>
<th>CD</th>
<th>Catholyte</th>
<th>U_c (V vs NHE)</th>
<th>CH_4</th>
<th>C_2H_4</th>
<th>H_2</th>
<th>CO</th>
<th>HCOOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Manthiram et al., 2014)</td>
<td>Nanoparticles, supported on glassy carbon</td>
<td>12.5</td>
<td>0.1</td>
<td>NaHCO$_3$</td>
<td>-1.35</td>
<td>76</td>
<td>1a</td>
<td>21b</td>
<td>1a</td>
</tr>
<tr>
<td>(Cook, 1988)</td>
<td>In situ uniformly deposited on glassy carbon</td>
<td>8.3</td>
<td>0.5</td>
<td>KHCO$_3$d</td>
<td>-1.7</td>
<td>73</td>
<td>25</td>
<td>1a</td>
<td>1a</td>
</tr>
<tr>
<td>(Kaneco et al., 2006)</td>
<td>Foil</td>
<td>22.7</td>
<td>0.25</td>
<td>NaClO$_4$, in CH$_3$OH</td>
<td>-2.8</td>
<td>70.5</td>
<td>3.1</td>
<td>17.9</td>
<td>3.2</td>
</tr>
<tr>
<td>(Varela et al., 2016)</td>
<td>Polycrystalline</td>
<td>14</td>
<td>0.2</td>
<td>KHCO$_3$</td>
<td>-1.43b</td>
<td>70b</td>
<td>15b</td>
<td>10b</td>
<td>4c</td>
</tr>
<tr>
<td>(Weng et al., 2018)</td>
<td>Cu(II) phthalocyanine</td>
<td>20.5</td>
<td>0.5</td>
<td>KHCO$_3$</td>
<td>-1.06</td>
<td>66</td>
<td>2.5b</td>
<td>28bc</td>
<td>1b</td>
</tr>
<tr>
<td>(Hori et al., 1986)</td>
<td>Sheet</td>
<td>5</td>
<td>0.5</td>
<td>KHCO$_3$</td>
<td>-1.36</td>
<td>65</td>
<td>5b</td>
<td>20b</td>
<td>1b</td>
</tr>
<tr>
<td>(Hori et al., 2002)</td>
<td>Single crystal Cu(S) (210)</td>
<td>5</td>
<td>0.1</td>
<td>KHCO$_3$</td>
<td>-1.52</td>
<td>60.5</td>
<td>11.6</td>
<td>7.3</td>
<td>2.6</td>
</tr>
<tr>
<td>(DeWulf et al., 1989)</td>
<td>Foil</td>
<td>15</td>
<td>0.5</td>
<td>KHCO$_3$</td>
<td>-1.76</td>
<td>60</td>
<td>5</td>
<td>33c</td>
<td>1a</td>
</tr>
<tr>
<td>(Kaneco et al., 1999)</td>
<td>Foil</td>
<td>12e</td>
<td>0.08</td>
<td>LiOH, in CH$_3$OH</td>
<td>-3.8</td>
<td>60</td>
<td>18</td>
<td>2e</td>
<td>15b</td>
</tr>
<tr>
<td>(Baturina et al., 2014)</td>
<td>Electrodepositedd</td>
<td>-</td>
<td>0.1</td>
<td>KHCO$_3$</td>
<td>-2.0</td>
<td>60b</td>
<td>19b</td>
<td>7.5c</td>
<td>5c</td>
</tr>
</tbody>
</table>

a Not mentioned in the work, thus assumed as 1%; b Value estimated from graphs; c Includes the remaining FE; d 0.5·10$^{-4}$ M CuSO$_4$ (for electrodeposition); e in parenthesis the reported data for exclusively HCOOH.
3. Results

3.1 Influence of the purity of the CO₂ source (upstream processing) and the conversion

To analyse the effect of the purity of the CO₂ stream, several conversions of CO₂ per pass through the ER reactor $X_{CO₂}$ were studied, namely 10%, 50% and 99%. To remove the effect of the separation of the i^{kNT} products, a reference ER reactor with $FE_{CH₄}$ of 100% was considered (at a pH value of 0). This way, a single effect is analysed. It is assumed that the dilution of the CO₂ has not an effect on the other experimental conditions (a detailed model of the ER reactor has not been used in this work). Figure 3 represents the energy contribution of the individual stages $EC_{ER-CH₄}$, $EC_{SEP-CO₂}$, and EC_{COMP} stacked up to 100%. The total energy consumption per unit of mass of CH₄ ($EC_{CH₄}$ (kWh·kg⁻¹ CH₄)) is also represented. As a reference ER reactor is considered here, $EC_{SEP-CH₄}$ and EC_{DIST} are necessary zero.

As it can be seen in Figure 3a) for a $X_{CO₂}$ of 10%, the contribution of $EC_{ER-CH₄}$ can vary from 62% (4% molar in CO₂) to 83% (99% molar in CO₂), while the contribution of $EC_{SEP-CO₂}$ does from 30% (4% molar in CO₂) to 6% (99% molar in CO₂). The contribution of EC_{COMP} ranges from 8% to 11%. On the other hand, for a $X_{CO₂}$ of 99% as it is shown in Figure 3c), for the most concentrated stream, the contribution of $EC_{ER-CH₄}$ can be as high as 88%, being the other significant contributor the EC_{COMP} with the remaining 12%. In this case, the $EC_{CH₄}$ can be as low as 16.1 kWh·kg⁻¹ CH₄.

For the $X_{CO₂}$ of 50%, intermediate values are evidently obtained as it is displayed in Figure 3b). It is clear that an extended conversion leads to lower energy consumption of the separation of the unreacted CO₂. ER reactor design should be also focused in the effort to develop the maximum possible conversion to reduce in turn as much as possible the energy consumption derived from the separation. For the lower conversion $X_{CO₂}$ of 10%, the most diluted source of CO₂, which is the post combustion gases from burning natural gas (4% molar in CO₂), means that $EC_{ER-CH₄}$ contributes only 62%. The remaining separation and compression stages represents the remaining 38% of the electricity consumption.
Figure 3. Influence of the upstream CO₂ source: contribution of each stage to the total energy consumption as a function of the selected CO₂ source for a reference ER reactor (0 mV overpotential and a value of 100% for the $F_{E_{\text{CH}_4}}$). a) X_{CO_2} CO₂ conversion 10%, b) X_{CO_2} CO₂ conversion 50%, c) X_{CO_2} CO₂ conversion 99%. The $SEC_{\text{ER-CH}_4}$ of the reference ER is 14.2 kWh·kg⁻¹.

3.2 Effect of the faradaic efficiency and the cathode potential (reaction)

From the previous analysis, it is clear that the process benefits from the highest possible CO₂ conversion. Here we have considered an intermediate conversion X_{CO_2} of 50%. A reference ER reactor is used as benchmark for a proper comparison including the most diluted source of CO₂ (4%) which leads to a molar ratio N₂:CO₂ of 24. Due to experimental results being used, the simultaneous effect of the FE_{iR} and the U_c is considered.

Regarding the distribution of products, Table 2 of the SI shows the mass balance for the entire process for the selected references, considering that the basis for the calculation is 1 kg of CH₄. Although relevant quantities of C₂H₄ are produced, it is evident that the main gaseous product of the reduction reaction on a mass basis is CH₄. A key issue is the production of HCOOH in the liquid phase. The production of HCOOH can be as high as 3.42 kg·kg⁻¹ of CH₄. This product has an insignificant market share compared to SNG. Consequently, its
production is unnecessary and must be avoided unless a valorisation route is discovered for a particular scenario. With the target of a massive production of CH$_4$ by this electrochemical PtG route, the valorization of massive amounts of HCOOH seems to be quite difficult. However, current developments are aiming at catholyte-free ER process for HCOOH (Lee et al., 2018), which substantially should increase the product concentration thus reducing the amount of steam needed for separation which is the main drawback for its valorisation (Dominguez-Ramos et al., 2015). Additionally, large amounts of O$_2$ are produced in the anode, so a way to its valorisation is necessary. Indeed, the process could be potentially connected to the corresponding CO$_2$ source as in the described example of burning NG. This would lead to a process in which O$_2$ is supplied by the ER plant rather than from an air separation unit, avoiding the separation of the CO$_2$/N$_2$ mixture. The greatest variation among used references is found in the production of H$_2$ and CO. In this work, H$_2$:CO molar ratios obtained range from 0.1 to 28, making some of them valid for the use as syngas for Fischer-Tropsch processing, while the other must be valorised as H$_2$. Additional purification must be necessary here. Considering the size, the in-situ valorization of the H$_2$ or syngas should be discussed. The production of HCOOH should be suppressed as much as possible if valorisation is not possible.

Figure 4 displays the contribution of the different k stages to the EC_{CH_4} taking into account the best performers at lab-scale. Due to the previous discussion regarding HCOOH, the value of EC_{DIST} is not added to the total value of EC_{CH_4}. A maximum value of 88.8·103 MJ·kg$^{-1}$ (equivalent to 24.7 kWh·kg$^{-1}$) would be potentially obtained for EC_{DIST}. The fact that the EC_{ER-CH_4} has a contribution in the range from 82% to 92% means that the ER stage has the highest contribution to the overall process thus all efforts must be directed towards the reduction of the U_C as much as possible. The difference between the energy consumption of the reference ER reactor EC_{REF-CH_4} with a value of 18.5 kWh·kg$^{-1}$ (with a X_{CO_2} of 50%) and the minimum energy specific consumption SEC_{ER-CH_4} with a value of 14.2 kWh·kg$^{-1}$ is the accounting of the EC_{SEP-CO_2} and EC_{COMP}. The ratio of the total electricity consumption EC_{CH_4} related to the total electricity consumption for the reference ER reactor EC_{REF-CH_4} goes from 2.6 to 6.2, which explains the large contribution of EC_{ER-CH_4} to EC_{CH_4}. The EC_{SEP-CO_2} has a small contribution to the overall EC_{CH_4}, ranging from 3.3% to 8.3%. Surprisingly, the EC_{SEP-CH_4} has little effect on EC_{CH_4}, just in the interval from 1.7% to 3.7%. The separation of CO$_2$ from N$_2$ from the flue gas of a coal-fired power plant is well-
established at values over the minimum thermodynamic value of 110 kWh·t⁻¹ of separated CO₂; current values can be as low as 200 kWh·t⁻¹ of separated CO₂, including compression to 150 bar (Boot-Handford et al., 2014). A value of 0.25 kWh·m⁻³ (assumed as m³ of feed) was reported to deal with the real separation of the unconverted CO₂ by pressure swing adsorption (PSA) as technology (Jouny et al., 2018). In the case of the conditions of the best performer (Manthiram et al., 2014), the equivalent values would be 1,163 kWh·t⁻¹ of separated CO₂ (the additional separation of CH₄ is included and a much more diluted CO₂ stream is considered than in coal-fired power plants) and 0.08 kWh·m⁻³. In the hypothetical case the CO₂ stream would be 12% molar (the remaining 78% as N₂, thus no CH₄ separation), the chosen value of \(f_{\text{SEP-CO₂}} \) would lead to 290 kWh·t⁻¹ of separated CO₂ and 0.06 kWh·m⁻³. Consequently, the obtained values of \(EC_{\text{SEP-CO₂}} \) are in the expected order of magnitude. For the separation of CH₄ at 50% wt. from other products, it was reported values up to 1.1 MJ·kg⁻¹ of CH₄ in unwanted gas by membrane pressurization and 8.2 MJ·kg⁻¹ of CH₄ in CO₂ by PSA (Greenblatt et al., 2018). Again, for the best performer (Manthiram et al., 2014), the equivalent value is close to the reported range, that is, 2.9 MJ·kg⁻¹ of CH₄ (3.59 kWh·kg⁻¹ of CH₄) was obtained. This value is lower than the minimum \(SEC_{\text{ER-CH₄}} \) value of 14.2 kWh·kg⁻¹ of CH₄, which points out the fact that the ER process demands considerably more energy than the separation. Electricity is assumed here as the energy vector for the separation of the mixture of gases by PSA or membrane technology. The actual separation of CO₂ using aqueous monoethanolamine (MEA) solutions (30% wt. in MEA) uses industrial heat to deal with the separation. This separation is far away from being trivial due to the difficulties to choose or design efficient solvents which improve the economical indicators of the process (Mota-Martinez et al., 2017). Consequently, it can be confirmed that the selected approach for the product separation provides figures according to previous published studies. It is worthy to mention that the selected approach is not affected by the order of the cascade separation, thus different configurations would potentially lead to similar values of \(EC_{\text{CH₄}} \).
Figure 4. Contribution of each stage to the total energy consumption EC_{CH_4} for the selected references of top performers. The LC_{EF-CH_4} is 18.5 kWh·kg⁻¹.

3.3 The effect of the carbon footprint in the PV solar powered ER of CO₂ to CH₄

Previous section has displayed the amount of the different i products that can be technically achievable by means of the PV solar powered ER, considering the different k stages. However, it is difficult to claim the possibility to valorise all the products apart from CH₄ and C₂H₄ due to market restrictions. To provide the most possible conservative approach, the carbon footprint associated with just these two predominant products CF_{CH_4} will be considered. This means that the avoided burdens from the other potential avoided products (H₂CO, O₂, and HCOOH) are not taken into account. The electricity demanded by H₂/CO and O₂ separation and compression will be accounted for even if the two products are not valorised. The same cannot be hold true for HCOOH due to the amount of thermal energy required.

As all the energy requirements are due to the electricity demanded by the process, Figure 5 reports the carbon footprint associated with the production of 1 kg of CH₄ CF_{CH_4} and the
corresponding amounts of all products but HCOOH (as stated in Table 2 of the SI) as a function of the carbon footprint of the PV reference used.

Horizontal thick solid lines represents the carbon footprint associated with the commercial production of the two products (Ecoinvent, 2017). The green solid line is the value for the global average distribution of natural gas at high pressure CF_{Eco-NG} with a value of 0.46 kg·kg$^{-1}$ (Ecoinvent, 2017). The reported $CF_{Eco-C_2H_4}$ is 1.43 kg·kg$^{-1}$ (Ecoinvent, 2017). The top red solid line is the maximum $CF_{Eco-Max}$ value that would be obtained among the chosen case of studies (1.03 kg·kg$^{-1}$) because of the production of CH$_4$ (1 kg) and C$_2$H$_4$ (0.40 kg). The rationality for the selection of these two values as reference is based on the average production. As the distribution of NG at high pressure reports a global average of CF_{Eco-NG} of 0.46 kg·kg$^{-1}$ (Ecoinvent, 2017), the production of 1 kg of CH$_4$ by the PV solar powered ER will avoid those emissions. Around 50% of the is due to CO$_2$ and 30% to CH$_4$. This value as a proxy value for the production of NG seems to be reasonable. The horizontal ocean blue thick line represents the mass ratio CO$_2$:CH$_4$ in a perfect combustion, thus highlighting the limit for an overall carbon neutral process (2.75 kg·kg$^{-1}$).

Vertical dotted lines in Figure 5 represents the CF_{PV} of the different selected sources: current average PV solar (high) CF_{PV-H}, current average PV solar (low) CF_{PV-L}, and future 2050 PV solar CF_{PV-F}, whose values are 58·10$^{-3}$ kg·kWh$^{-1}$, 14·10$^{-3}$ kg·kWh$^{-1}$ (Hertwich et al., 2015) and 5·10$^{-3}$ kg·kWh$^{-1}$ (Pehl et al., 2017), respectively. The values for current PV solar energy are not simply estimations from theoretical scientific studies. For particular studies of real PV solar facilities, CF_{PV} values as low as 20.2·10$^{-3}$ kg·kWh$^{-1}$ have been already reported (Acciona Energia, 2017). The discussion of the electricity accounted at high, medium or low voltage is out of the scope of this work. The previous range for CF_{PV} fits in the range corresponding to the grid mix of countries with very low CF, in which the mix is dominated by hydropower and/or nuclear (Herbert et al., 2016). Therefore, the discussion could be potentially expanded to mixed sources of electricity rather than PV solar technologies. The three remaining lines represents the evolution of the carbon footprint that would be obtained for the maximum energy consumption EC_{Max-Ch_4} (78.9 kWh·kg$^{-1}$), the minimum energy consumption EC_{Min-Ch_4} (47.4 kWh·kg$^{-1}$) and the reference ER energy consumption EC_{REF-Ch_4} (13.5 kWh·kg$^{-1}$).

It is observed that the use of a reference ER process would not accomplish to even the CF_{Eco-NG} of 0.46 kg·kg$^{-1}$ unless the low value CF_{PV-L} of 14·10$^{-3}$ kg·kWh$^{-1}$ is used. As it is evident, the lower the carbon footprint of the PV solar, the better for the PV solar powered
ER process. For the $E_{\text{Max}-\text{CH}_4}$ and the $E_{\text{Min}-\text{CH}_4}$, the $C_{F_{\text{PV-L}}}$ is not enough to compensate the overall $C_{F_{\text{CH}_4}}$. An ultra-low $C_{F_{\text{PV-F}}}$ would put remedy to the situation as a $C_{F_{\text{CH}_4}}$ of 0.093 kg·kg$^{-1}$ would be obtained for the consideration of $E_{\text{REF}-\text{CH}_4}$. The valorisation of C$_2H_4$ can help at offsetting the $C_{F_{\text{CH}_4}}$. Using $C_{F_{\text{PV-L}}}$ for the current best performer, it would be possible to even the $C_{F_{\text{CH}_4}}$ due to the contribution of C$_2$H$_4$ (the horizontal thick red line in Figure 5). Therefore, in order to produce a PtSNG process capable of injecting CH$_4$ into the NG network using the ER approach discussed in this work, the use of an ultra-low source of electricity is necessary unless the valorization of a parallel product such as C$_2$H$_4$ is possible.

Using as reference $C_{F_{\text{PV-H}}}$, the $C_{F_{\text{CH}_4}}$ due to the E_{Max}-scheme is ~4.5 kg·kg$^{-1}$. Table 3 reports values obtained in the literature for the PtSNG approach under different hypothesis. As many hypothesis are needed, the benchmark values must be managed carefully. Due to the strong influence of the carbon footprint of the grid mix used and the chosen boundaries (avoided burdens can alter results), the reported range can be wide. However, it can be stated a general range of the $C_{F_{\text{CH}_4}}$ from ~1 kg·kg$^{-1}$ to ~10 kg·kg$^{-1}$. Under the most conservative approach, our value of 4.5 kg·kg$^{-1}$ fits adequately this previous range. We do state that a lower value of the $C_{F_{\text{CH}_4}}$ can be pursued under a greener electricity source, without the need of the valorisation of additional products. An ultra-low carbon source would be capable of evening the $C_{F_{\text{Eco-NG}}}$. Indeed, the PV solar powered ER, as an example of PtSNG, should help at the development of additional flexibility of the electricity network backed by the NG network. Let us assume that the energy contained per unit of mass of CH$_4$, C$_2$H$_4$ and H$_2$ are 50 MJ·kg$^{-1}$, 47 MJ·kg$^{-1}$ and 120 MJ·kg$^{-1}$ respectively. If so, the overall energy efficiency (ratio energy contained in the products to total electricity input E_{CH_4}) of the proposed PtSNG would be between 17% and 44%. Consequently, this process would potentially recover a significant amount of the curtailed electricity under high percentage penetration of renewables. Potentially, the $E_{\text{Min-CH}_4}$ could even the emissions of CO$_2$ from the combustion of pure CH$_4$ (2.75 kg·kg$^{-1}$) as represented by the blue ocean horizontal thick line when the carbon footprint of the is $C_{F_{\text{PV-H}}}$.

The technical barriers discussed previously for the PV solar powered ER to CH$_4$ are being demolished by current developments both in faradaic efficiency, cathode voltage and PV solar efficiency so even if it “…will require time…” (Aresta et al., 2013) to reach the proper Technological Readiness Level, it is expected that a more sustainable production of energy is ready on time to meet the global goals related to Climate Change. This work can help at stating the benefits associated with CCU thus promoting its current social acceptance (Perdan
et al., 2017) especially if the comparison versus carbon capture and storage arises (Bruhn et al., 2016).

Figure 5. Comparison of the carbon footprint of the performers with the lowest (EC_{Min-CH_4}) and highest (EC_{Max-CH_4}) energy consumption per 1 kg of pure CH$_4$ and its comparison to the carbon footprint of the products obtained via current global processes.
Table 3. The carbon footprint obtained in previous studies regarding PtG (only PtSNG is
analysed here). Conversion to adopted values has used a default value of 50.03 MJ·kg⁻¹ of
CH₄. A generic 2 MJ·km⁻¹ was used as tank-to-wheel efficiency for transportation distances
of the NG vehicles. The reader is referred to original references for additional details.

Methanation is the preferred PtG technology.

<table>
<thead>
<tr>
<th>Reference</th>
<th>CO₂ source</th>
<th>Electricity source</th>
<th>Adopted value (kg·kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Parra et al., 2017)</td>
<td>Direct Air Capture</td>
<td>Swiss grid mix</td>
<td>5.6</td>
</tr>
<tr>
<td>(Collet et al., 2017)</td>
<td>Anaerobic digestion of sewage sludge</td>
<td>French grid mix - EU grid mix</td>
<td>1.25 - 6.25</td>
</tr>
<tr>
<td>(Zhang et al., 2017)</td>
<td>Wood power plant</td>
<td>PV supply (Swiss)</td>
<td>6.13</td>
</tr>
<tr>
<td></td>
<td>Hard-coal power plant</td>
<td></td>
<td>9.81</td>
</tr>
<tr>
<td>(Uusitalo et al., 2017)</td>
<td>Wind power</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>(Sternberg and Bardow, 2016)</td>
<td>Coal-fired power plant</td>
<td>Variable grid mix</td>
<td>11.1</td>
</tr>
</tbody>
</table>
4. Conclusions

The present study has analysed the Carbon Footprint behind using Photovoltaic (PV) solar energy in order to power an Electrochemical Reduction (ER) of CO₂ to Synthetic Natural Gas (PtSNG). As a novelty, the performance data of the best available cathodes at lab-scale was chosen to feed a model whose output is the mass distribution of products (CH₄, C₂H₄, H₂/CO and HCOOH) and the consumption of energy, mainly as electricity, in each involved stage (reaction, separation of unconverted CO₂, separation of CH₄, and compression to distributable products). The thermal energy for the distillation of HCOOH is not included if no prospects of valorisation does exist.

The influence of the purity of the CO₂ source was analysed for a reference ER reactor producing only CH₄. Even if a conversion of 10% for CO₂ is considered, for the most diluted CO₂ stream at 4% molar, the energy consumption of the ER is by far the main contributor with values over 60%. Higher concentrations and conversions leads to even higher contributions of the ER stage. For currents developments at lab-scale, a diluted source at 4% molar of CO₂ is used (molar ratio N₂:CO₂ is 24) and a conversion of CO₂ is fixed at 50%. In this case, the energy consumption of the ER (not including distillation of HCOOH) is about 2.6 to 6.2 times the one from using the reference ER (18.5 kWh·kg⁻¹ of CH₄). Thus, the contribution of the ER is in the range between 81% to 92%. This large contribution is related to the actual cathode overpotentials and faradaic efficiencies, which carries large penalties.

To compensate for the energy consumption, low carbon sources must be used to power the process and to obtain a ready-to-inject SNG. The valorisation of C₂H₄ as coproduct can help at the offsetting of the overall carbon footprint so under current developments the use of PV solar energy can even the current carbon footprint of the obtained products versus the equivalent production of NG (average world extraction and distribution) and C₂H₄. Future PV technology will allow to reduce even further the associated carbon footprint.

The proposed PV solar powered ER is a technology to be developed as the actual state-of-the-art prevents its utilization due to the low stability of the cathodes, which prevent its industrial use. The great potential, as in PtG technology, relies in the interaction between the electric network and the NG network, providing flexibility in the operation due to the possibility of using curtailed electricity without the need of the intervention of H₂ as intermediate.
5. Acknowledgements

Authors gratefully acknowledge the funding provided by the State Research Agency, Spanish Ministry of Economy and Competitiveness (Spain) through the project CTQ2016-76231-C2-1-R.
6. References

Acciona Energia, 2017. Environmental Product Declaration- Electricity generated in photovoltaic power plant El Romero Solar 196 MW.

Bailera, M., Lisbona, P., Romeo, L.M., Espatolero, S., 2017. Power to Gas projects review:

Jhong, H.-R. “Molly,” Ma, S., Kenis, P.J., 2013. Electrochemical conversion of CO2 to...

Min, X., Kanan, M.W., 2015. Pd-Catalyzed Electrohydrogenation of Carbon Dioxide to

Mota-Martinez, M.T., Hallett, J.P., Mac Dowell, N., 2017. Solvent selection and design for CO2 capture – how we might have been missing the point. Sustain. Energy Fuels 1, 2078–2090. doi:10.1039/C7SE00404D

doi:10.1039/c3ee41151f

doi:10.1021/cr100290v

electroreduction of CO2 to CH3OH with high selectivity using a pyrite–nickel sulfide
Reduction of CO2 into Formic Acid on a Lead or Tin Electrode using an Ionic Liquid
doi:10.1002/anie.201601974
The carbon footprint (CF) of a PV solar powered electro-reduction for CH₄ was analysed. All relevant stages as reaction, separation of CO₂ and CH₄ and compression are included. Between 2.6 and 6.2 times is the current electricity consumption compared to reference conditions. The main contribution in CF terms is the reaction stage. The CF of best performer can even the CF of the existing process for CH₄.