The effects of silica on the density, boron–oxygen speciation and thermal properties of glasses from the system: PbO–B2O3–SiO2 (PbO concentration: 30, 40, 50 and 60 mol% and silica concentration: 5, 10, 20 and 30 mol%) was studied by 11B MAS NMR and DSC techniques. The incorporation of silica in the borate network steadily increases glass density, decreases the glass transition temperature and increases the thermal stability of glasses against crystallization. SiO2 at low concentrations of up to 20 mol% increases the three dimensional network connectivity by promoting the conversion of BO3 into [BO4]3– units, however at higher silica contents of 30 mol%, the formation of [BO4]3– was suppressed and nonbridging oxygens were rapidly generated in SiO4 and BO3 units. The average number of NBOs per BO3 unit increases with silica concentration and this was indicated in the NMR spectra of glass series with 60 mol% PbO which exhibited a shift in the centre of gravity of the BO3 resonance peak towards more positive ppm values (de-shielding) at a silica concentration of 30 mol%. DSC studies indicated phase separation in the glasses which suggested that the mixing of Pb2+ ions, BO3, [BO4]3– units act as charge balancing centres against positively charged [BO4]3– units, the additional oxygens being provided by the metal oxides. The negatively charged [BO4]3– units act as charge balancing centres against positively charged metal ions and enhance the three-dimensional network connectivity. Another charge balancing centre is a nonbridging oxygen (NBO), these are oxygen atoms bonded to only one charge balancing centre. NBOs also carry negative charge and their formation decreases the mechanical strength of glasses, reduces chemical durability and enhances their tendency towards devitrification on heat treatment. The concentration of NBOs in glasses can be obtained from N4 values by applying the local charge neutrality condition on one glass molecule. An estimation of NBO concentration in glasses can be obtained from N4 values by applying the local charge neutrality condition on one glass molecule.
to water is found with highest concentration of four coordinated borons in the glass.\(^{(11)}\)

SiO\(_2\) like B\(_2\)O\(_3\) is an excellent glass former and SiO\(_2\) tetrahedra are the basic structural units in silicate and borosilicate glasses; unlike boron the coordination number of silicon with oxygen is always fixed at 4, although the oxygen atoms in SiO\(_4\) tetrahedra can be both bridging oxygens (BO), denoted as O, and nonbridging oxygens denoted as O'. The Q\(_n\) nomenclature is used to indicate the number of BOs per SiO\(_4\) tetrahedron, where \(n\) is the number of bridging oxygens and (4−\(n\)) is the number of nonbridging oxygens per SiO\(_4\) tetrahedron. The number of BOs in a SiO\(_4\) tetrahedron can vary from 0 to 4,\(^{(23)}\) therefore there are five types of SiO\(_4\) units in silicate and borosilicate glasses, which contain either all BOs, all NBOs or both, and are denoted as Q\(_4\), Q\(_3\), Q\(_2\), Q\(_1\) and Q\(_0\). From the variation of N\(_4\) and Q\(_n\), one can determine the polymerization state of the borosilicate network and understand the structural transformations that take place with the addition of network modifiers such as PbO and network formers such as SiO\(_2\).

It is interesting to study the effects of silica on the boron–oxygen coordination and the possible inter-tetrahedral avoidance that may exist between [BO\(_4\)]\(^{−}\) and SiO\(_2\) units in borosilicate glasses. Significant inter-tetrahedral avoidance exists between [AlO\(_4\)]\(^{−}\) and [BO\(_4\)]\(^{−}\) units in aluminoborate and aluminoboro-silicate glasses, in which even small amounts of Al\(_2\)O\(_3\) (2 mol\%) drastically reduces N\(_4\).\(^{(10,24)}\) It is reported that while there is considerable avoidance between [AlO\(_4\)]\(^{−}\) and [BO\(_4\)]\(^{−}\) units in aluminoborate glasses, there is more random mixing among BO\(_4\) [BO\(_4\)]\(^{−}\) and SiO\(_2\) structural units in sodium borosilicate glasses.\(^{(24)}\)

The role of silica on the boron–oxygen speciation in lead borosilicate glasses was earlier studied by Kim \textit{et al} who found a small increase in N\(_4\) on adding silica to lead borate glasses and concluded that these glasses do not contain BO\(_4\) units with NBOs.\(^{(17)}\) Sudarsan \textit{et al} reported almost constant N\(_4\) in lead borosilicate glasses with varying silica concentrations.\(^{(18)}\) These earlier studies used low field \(^{11}\)\(^{\text{B}}\) NMR which did not fully resolve the resonance peaks of trigonal and tetrahedral borons and restricted the accurate quantification of N\(_4\) and f\(_{\text{NBO}}\), and hence a full understanding of the effects of silica on the glass structure and properties.

The effect of addition of silica on boron–oxygen speciation in soda lime borosilicate glasses has been analyzed by MAS NMR spectroscopy and it is reported that N\(_4\) increases steadily with increase in SiO\(_2\) mol\%.\(^{(25)}\) A two-state statistical model of borosilicate glasses predicts that the conversion of BO\(_3\) into [BO\(_4\)]\(^{−}\) is energetically more favourable than the formation of NBOs in the glass network, moreover the formation of NBOs in SiO\(_2\) tetrahedral units (Q\(_n\) units) is energetically more favourable than their formation in BO\(_3\) units.\(^{(25)}\) A second important question is concerned with the mixing of borate and silicate structural groups in borosilicate glasses. Mixing of the units can occur by the formation of danburite rings each containing two SiO\(_2\) and two BO\(_4\) units. The formation of danburite rings is the signature of mixing of silicate and borate structural groups. It has been found by Raman studies on alkali borosilicate glasses and melts that the concentration of danburite rings decreases with increasing temperature.\(^{(26,27)}\) Lastly, it is important to determine the total concentration of NBOs in borosilicate glasses and their relative fractions in SiO\(_2\) and BO\(_4\) units.

It is the objective of the present work to study the effects of replacing B\(_2\)O\(_3\) with SiO\(_2\) on the density, boron–oxygen coordination number, and fraction of NBOs and glass thermal properties of lead borosilicate glasses containing 30 to 60 mol\% PbO. The techniques employed for this purpose are density measurements, \(^{11}\)\(^{\text{B}}\) MAS NMR spectroscopy and differential scanning calorimetry (DSC). The structure and properties of ternary lead borosilicate glasses are compared with those of binary lead borate glasses studied earlier.\(^{(10)}\)

2. Experimental methods

2.1 Glass preparation

Glass samples of the following three lead borosilicate series were prepared by melt quenching:

1. 30PbO−(70−\(x\))SiO\(_2\) (\(x=5\) and 10 mol\%)
2. 40PbO−(60−\(x\))B\(_2\)O\(_3\) (\(x=5, 10, 20\) and 30 mol\%)
3. 60PbO−(40−\(x\))B\(_2\)O\(_3\) (\(x=5, 10, 20\) and 30 mol\%)

Binary lead borate glasses and one lead borosilicate glass series containing 50 mol\% PbO were prepared and characterized previously,\(^{(19)}\) and the results of that study were used here for comparison with properties of glass samples from the three series mentioned above. The procedure used for preparation of glass samples is described elsewhere.\(^{(19)}\) The composition, density, structural and thermal properties of all glass samples are given in Table 1.

2.2 Density measurements

The densities (\(d\)) of glasses were measured by the Archimedes method using dibutylphthalate (DBP) as the immersion fluid. Density measurements were repeated three to four times on each glass sample; Table 1 gives the average of repeated measurements on each glass. Density measurements were done with a precision better than 0.1%, the maximum error was ±0.004 g cm\(^{−3}\).

2.3 Differential scanning calorimetry (DSC)

DSC measurements were carried out on a SETARAM SETYS 16 TG-DSC system over the temperature range of 200–850°C with a heating rate of 10°C/min. DSC
studies were done on powdered glass samples in platinum pans under ambient air. Sample sizes of 20–50 mg were used to perform the DSC measurements.

2.4 11B MAS NMR

Lead borosilicate glass series containing 30, 40 and 60 mol% PbO were analyzed with a 2.5 mm Bruker MAS probe at room temperature on a Bruker Avance NMR spectrometer operating at 16.4 T corresponding to a Larmor frequency at 224.667 MHz for 11B. Single pulse acquisition was applied with spinning rate of 20 kHz and a short RF pulse of 0.4 µs (power of 78.4 mW) was used with a recycle delay of 5 s. Data were background corrected by subtraction of the empty rotor signal. All the spectra are referenced to the conventional standard, BF$_3$O(CH$_3$CH$_2$)$_2$ at 0 ppm.

3. Results

3.1 Density

Density in each of the four lead borosilicate glasses series containing 30, 40, 50 and 60 mol% PbO increased steadily with silica content from 5 to 30 mol% (Table 1 and Figure 1). The density of the binary lead borate glass with 30 mol% PbO (sample Pb60B40) is 4.472±0.001 g cm$^{-3}$ which increases to 4.288±0.003 g cm$^{-3}$ on adding 10 mol% of SiO$_2$. Similarly density of 60PbO–40B$_2$O$_3$ glass (sample Pb60B40) is 6.303±0.003 g cm$^{-3}$ which increases to 6.587±0.002 g cm$^{-3}$ on adding 30 mol% SiO$_2$ (sample Pb60B10Si30).

3.2 Glass transition and crystallization temperature

The glass transition temperature (T_g) of binary lead borate glasses decreases from 487 to 351°C as PbO concentration increases from 30 to 60 mol%.

Table 1. Composition, density, structural and thermal properties of lead borate and borosilicate glasses. Maximum uncertainty in density was ±0.004 g cm$^{-3}$ and uncertainty in temperature was ±1°C

<table>
<thead>
<tr>
<th>Sample code</th>
<th>Composition (mol%)</th>
<th>Molecular mass, M</th>
<th>Density, d (g cm$^{-3}$)</th>
<th>Molar volume, V_m (cm3 mol$^{-1}$)</th>
<th>N_4 (\times10$^{-3}$)</th>
<th>f_{NBO} (\times10$^{-3}$)</th>
<th>T_g (°C)</th>
<th>T_c (°C)</th>
<th>T_f (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb30B70</td>
<td>30 70 0</td>
<td>115.69</td>
<td>4.172</td>
<td>27.73</td>
<td>0.35</td>
<td>0.06</td>
<td>487</td>
<td>729</td>
<td>780</td>
</tr>
<tr>
<td>Pb30B65Si5</td>
<td>30 65 5</td>
<td>115.21</td>
<td>4.170</td>
<td>27.65</td>
<td>0.41</td>
<td>0.03</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb30B40Si10</td>
<td>30 40 10</td>
<td>114.74</td>
<td>4.288</td>
<td>26.79</td>
<td>0.42</td>
<td>0.04</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb40B60</td>
<td>40 60 0</td>
<td>131.05</td>
<td>4.964</td>
<td>26.40</td>
<td>0.43</td>
<td>0.13</td>
<td>454</td>
<td>578</td>
<td>780</td>
</tr>
<tr>
<td>Pb40B55Si5</td>
<td>40 55 5</td>
<td>130.57</td>
<td>4.985</td>
<td>26.20</td>
<td>0.47</td>
<td>0.13</td>
<td>448</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb40B50Si10</td>
<td>40 50 10</td>
<td>130.09</td>
<td>5.035</td>
<td>25.87</td>
<td>0.48</td>
<td>0.15</td>
<td>445</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb40B45Si20</td>
<td>40 45 20</td>
<td>129.14</td>
<td>5.098</td>
<td>25.40</td>
<td>0.49</td>
<td>0.20</td>
<td>442</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb40B40Si20</td>
<td>40 40 20</td>
<td>129.19</td>
<td>5.123</td>
<td>25.12</td>
<td>0.48</td>
<td>0.27</td>
<td>439</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb50B50</td>
<td>50 50 0</td>
<td>146.41</td>
<td>5.677</td>
<td>25.79</td>
<td>0.45</td>
<td>0.28</td>
<td>406</td>
<td>554</td>
<td>651</td>
</tr>
<tr>
<td>Pb50B45Si5</td>
<td>50 45 5</td>
<td>145.93</td>
<td>5.701</td>
<td>25.61</td>
<td>0.45</td>
<td>0.31</td>
<td>406</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb50B40Si10</td>
<td>50 40 10</td>
<td>145.45</td>
<td>5.760</td>
<td>25.28</td>
<td>0.44</td>
<td>0.34</td>
<td>402</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb50B35Si20</td>
<td>50 35 20</td>
<td>144.50</td>
<td>5.817</td>
<td>24.89</td>
<td>0.44</td>
<td>0.41</td>
<td>399</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb50B30Si20</td>
<td>50 30 20</td>
<td>143.54</td>
<td>5.860</td>
<td>24.58</td>
<td>0.41</td>
<td>0.50</td>
<td>396</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb60B40</td>
<td>60 40 0</td>
<td>161.76</td>
<td>6.303</td>
<td>25.66</td>
<td>0.39</td>
<td>0.50</td>
<td>351</td>
<td>497</td>
<td>565</td>
</tr>
<tr>
<td>Pb60B35Si5</td>
<td>60 35 5</td>
<td>161.29</td>
<td>6.362</td>
<td>25.36</td>
<td>0.42</td>
<td>0.52</td>
<td>345</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb60B30Si10</td>
<td>60 30 10</td>
<td>160.81</td>
<td>6.432</td>
<td>25.03</td>
<td>0.41</td>
<td>0.56</td>
<td>341</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb60B20Si20</td>
<td>60 20 20</td>
<td>159.85</td>
<td>6.506</td>
<td>24.62</td>
<td>0.37</td>
<td>0.66</td>
<td>338</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Pb60B10Si30</td>
<td>60 10 30</td>
<td>158.90</td>
<td>6.587</td>
<td>24.20</td>
<td>0.29</td>
<td>0.76</td>
<td>341</td>
<td>492</td>
<td>–</td>
</tr>
</tbody>
</table>

2(a), (b) and (c) are the DSC spectra of lead borosilicate glasses containing 40, 50 and 60 mol% of PbO, respectively. The lead borosilicate glass series with 40 mol% PbO exhibits at least two glass transitions, the sample with 5 mol% SiO$_2$ shows one strong glass transition at 448°C and a second weak glass transition at 520°C. This is an indication of phase separation in the glasses, which can arise due to incomplete mixing of borate and silicate structural units. The primary glass transition temperature decreases steadily from 448 to 439°C with an increase in silica concentration from 5 to 30 mol%. In the second glass series containing 50 mol% PbO, T_g decreases from 406 to 396°C as the silica concentration increases from 5 to 30 mol% (Figure 3). Glasses with 50 mol% PbO show a single glass transition. Finally the third glass series with 60 mol% PbO shows decrease in T_g from 345 to 341°C as the SiO$_2$ content was increased from 5 to 30 mol%. This glass series shows weak glass transitions at
higher temperatures of ~400°C. Further while binary lead borate glasses exhibit exothermic crystallization (T_c) and endothermic melting peaks (T_m), these were absent in the lead borosilicate glasses. Therefore it was concluded that the crystallization tendency is significantly lower for the borosilicate glasses than for the borate glasses.

3.3 Fraction of tetrahedral borons and nonbridging oxygens

11B MAS NMR spectra of lead borosilicate glasses containing 30, 40 and 60 mol% PbO and variable silica contents of 5 to 30 mol% are shown in Figures 4, 5 and 6, respectively. The NMR patterns of binary lead borate glasses and lead borosilicate glasses containing 50 mol% PbO are shown in Ref. 10.

Two well resolved peaks, one relatively sharp peak centred between −0.2 to 0.8 ppm and another broader peak centred in the range of 13.7 to 16.5 ppm were detected in all samples (Figures 4–6). The first peak is due to tetrahedrally coordinated borons while the second peak is due to non-bridging oxygens.
second peak is due to trigonally coordinated borons in the glasses. The fraction of tetrahedral borons \((N_4) \) was calculated from the ratio of integrated area under these two peaks i.e. \(N_4 = A_4/(A_3+A_4) \). The integration of area under these two peaks was done using Origin-6.0 Professional software and the maximum uncertainty in \(N_4 \) was ±0·01.

\[N_4 \text{ in glasses with 30, 40 and 60 mol\% PbO initially increases with increasing silica concentration. For example, } N_4 \text{ increases from 0·35 in binary lead borate glass (Sample Pb30B70) to 0·42 in glass with 10 mol\% silica (Sample Pb30B60Si10). In the case of lead borate glass with 40 mol\% PbO, } N_4 \text{ even exceeds the maxima of } N_4 \text{ in binary lead borate glass at 50 mol\% PbO (Figure 7), similarly in case of glasses with 60 mol\% PbO, } N_4 \text{ increases from 0·39 to 0·42 on adding 5 mol\% SiO}_2 \text{ and then decreases slowly up to 10 mol\% silica and more rapidly at 20 and 30 mol\% silica. However the structural changes in lead borosilicate glasses containing 50 mol\% PbO were different from those in other lead borosilicate glasses; } N_4 \text{ remains constant at 0·45 on adding 5 mol\% of silica and then decreases slowly to 0·41 on increasing the silica concentration to 30 mol\%. The structure of this glass series seemed to be most resistant to changes in } N_4 \text{ with silica substitution.} \]

\(N_4 \) in glasses with 30, 40 and 60 mol\% PbO is shown in Figure 7.

Using the measured values of \(N_4 \), the average B–O coordination number, \(n_{BO} = 3 + N_4 \), and the average oxygen–boron coordination, \(n_{OB} = n_{BO}(c_B/c_O) \), where \(c_B \) and \(c_O \) are the molar concentrations of boron and oxygen, respectively, and taking Si–O coordination, \(n_{SiO} = 4 \), to be fixed at 4, the average oxygen–silicon coordination number, \(n_{OSi} = 4(c_Si/c_O) \), was calculated and these values were used to determine the fraction of NBOs \((f_{NBO}) \) in the borosilicate network using:

\[f_{NBO} = 2 - (n_{OSi} + n_{OB}) \]

Figure 5. \(^{11} \text{B MAS NMR spectra of lead borosilicate glasses containing 40 mol\% PbO [Colour available online]} \)

Figure 6. \(^{11} \text{B MAS NMR spectra of lead borosilicate glasses containing 60 mol\% PbO [Colour available online]} \)

Figure 7. Variation in \(N_4 \) with silica concentration in the four lead borosilicate glass series. \(N_4 \) in binary lead borate glasses corresponding to 0 mol\% of SiO\(_2\) are also shown [Colour available online]

The above calculation of NBOs is based on the condition of overall charge neutrality of a molecular formula unit, and on the assumptions that there are no oxygen triclusters in the glass network, and that Pb\(^{2+}\) is purely ionically bonded with oxygen and does not participate in the network formation. This assumption may not be strictly valid at high PbO
contents of 50 and 60 mol% where PbO begins to act like a network former and its bonding acquires more covalent character.\(^{(11,15–17)}\) Small concentrations of oxygen triclusters and covalently bonded Pb atoms will reduce the actual values of \(f_{\text{NBO}}\) in glasses as compared to values determined from relation (1).

The \(f_{\text{NBO}}\) values were calculated for all glasses using Equation (1) and it was found that its value decreases from 0·06 to 0·03 on adding 5 mol% of silica in 30PbO–70B\(_2\)O\(_3\) glass (sample Pb30B70) and then again increases to a 0·04 with further increase in silica content to 10 mol% (sample Pb30B60Si10).

In the three lead borosilicate glass series containing 40, 50 and 60 mol% PbO, \(f_{\text{NBO}}\) increases steadily but slowly up to 20 mol% silica and then more rapidly at a silica concentration of 30 mol%. Figure 8 shows the changes in \(f_{\text{NBO}}\) in all of the glasses.

4. Discussion

The increase of density with increase in silica mol% in the four lead borosilicate glass series can be either due to the increase in molecular mass or due to the decrease in structural volume or both. It is clear from data given in Table 1 that in each lead borosilicate glass series, molar mass decreases by small amounts with increasing silica concentration, for example molar mass decreases from 161·76 to 158·9 g mol\(^{-1}\) on adding 30 mol% silica into lead borate glasses with 60 mol% of PbO.\(^{11}\) MAS NMR measurements confirmed that the concentration of [BO\(_4\)]\(^{−}\) units increases with silica additions, which enhances crosslinking and three-dimensional network connectivity. The molar volume data presented in Table 1 for all four glass series clearly shows that silica additions lead to the compaction of the glass structure which leads to increasing glass density.

Earlier Fujino \textit{et al.} had prepared and measured the density of several lead borosilicate glasses and melts. They also reported a small increase in the melt and glass density on adding silica (SiO\(_2\)) at the expense of B\(_2\)O\(_3\); the density values of our lead borosilicate glasses are in good agreement with the results of Fujino \textit{et al.}.\(^{(28)}\)

Glass transition temperature decreases by 10 to 15°C with increasing silica concentration; a result which agrees with the findings of Sudarsan \textit{et al.} who reported a decrease in \(T_g\) on replacing B\(_2\)O\(_3\) by SiO\(_2\) in lead borosilicate glasses containing 50 mol% PbO.\(^{(18)}\) The decrease in \(T_g\) is mostly due to the increase in the concentration of NBOs with the addition of silica. Although network connectivity increases with the formation of [BO\(_4\)]\(^{−}\) units, the single B\(^{\text{III}}\)–O bond strength (373 kJ mol\(^{−1}\)) is less than the single B\(^{\text{III}}\)–O bond strength (498 kJ mol\(^{−1}\)).\(^{(29)}\) therefore B\(^{\text{IV}}\)–O bonds can be broken more easily than B\(^{\text{III}}\)–O bonds and hence the increase in \(N_4\) decreases the glass transition temperature.

Borosilicate glasses containing 40 and 60 mol% of PbO exhibit a second weak glass transitions at higher temperatures marked by dotted circles in Figures 2(a)–(c), indicating that small phase separated regions (heterogeneities) were present in these glasses; this could arise due to some amount of demixing of borate and silicate structural units. It is evident from the DSC spectra shown in Figures 2(a)–(c) that the exothermic crystallization peaks are absent in glasses containing silica, while lead borate glasses exhibit crystallization peaks. Therefore the glass stability against crystallization is enhanced with the addition of silica in borate glasses. This enhancement in glass thermal stability can be a direct manifestation of phase separation or heterogeneities in lead borosilicate glasses; the existence of several competing phases is reported to suppress the tendency for crystallization.\(^{(30,31)}\) However the size of these phase separated regions (heterogeneities) in lead borosilicate glasses must be very small as all samples were optically clear and transparent.

\(^{11}\)B MAS NMR studies provide important insights about the role of silica on boron speciation in lead borosilicate glasses. Firstly, it is important to note that \(N_4\) reaches its maxima at 50 mol% of PbO in binary lead borate glasses (Figure 7). On adding silica to this base glass, \(N_4\) remains nearly constant at 0·45–0·44. This result agrees with findings by Sudarsan \textit{et al.} that \(N_4\) is almost constant with silica content in lead borosilicate glasses containing 50 mol% PbO.\(^{(18)}\) The \(f_{\text{NBO}}\) increases steadily from 0·28 in 50PbO–50B\(_2\)O\(_3\) glass (sample Pb50B50) to 0·50 in lead borosilicate glass with 50 mol% PbO and 30 mol% of silica (sample Pb50B20Si30).

Although \(N_4\) is nearly constant with increase in silica concentration in the glass series with 50 mol% PbO, the total number of negatively charged [BO\(_4\)]\(^{−}\) species in the glass network decreases due to partial replacement of B\(_2\)O\(_3\) by SiO\(_2\), therefore in order to...
maintain local charge neutrality (i.e. compensate the positive charge of Pb\(^{2+}\)) additional NBOs in BO\(_3\) and SiO\(_4\) units are generated by the following reaction mechanisms:

\[
\begin{align*}
2[BO_3^\text{2-}] + O^\text{2-} & \rightleftharpoons 2BO_2^\text{4-} \quad (2) \\
2[SiO_4^\text{2-}] + O^\text{2-} & \rightleftharpoons 2[SiO_3^\text{2-}O^\text{2-}] \quad (3) \\
[SiO_4^\text{2-}] + O^\text{2-} & \rightleftharpoons [SiO_3^\text{2-}O^\text{2-}] \quad (4)
\end{align*}
\]

where O\(^{2-}\) ions are provided by PbO. O\(^{\text{2-}}\) denotes \(x\) oxygen anions, each coordinated with \(y\) network cations (\(\text{B}^{3+}\) and \(\text{Si}^{4+}\)), e.g. bridging oxygen when \(y=2\), and O\(^{2-}\) denotes nonbridging oxygen (NBO).

\(^{29}\)Si MAS NMR studies by Sudarsan et al. on lead borosilicate glasses containing 50 mol\% PbO and 20 to 30 mol\% of SiO\(_2\) found that about 68\% of silica tetrahedra are SiO\(_2^\text{2-}\)O\(_{2\text{y}}\) (Q\(_3\)), 28\% are SiO\(_3^\text{2-}\)O\(_{2\text{y}}\) (Q\(_2\)) and the remaining 4\% are SiO\(_4^\text{2-}\) (Q\(_4\)). Using the measured values of N\(_4\), Q\(_2\) and Q\(_3\) in sample Pb\(_{50}\)B\(_{30}\)Si\(_{20}\) it can be calculated from local charge neutrality condition on one glass “molecule” (50PbO–30B\(_2\)O\(_3\)–20SiO\(_2\)) that the \(f_{\text{NBO}}\) contribution from BO\(_3\) units is 0.23 and \(f_{\text{NBO}}\) from SiO\(_4\) units (Q\(_{2}\) and Q\(_{3}\)) is 0.18 (total \(f_{\text{NBO}}\) = 0.41). Similarly in the glass sample Pb\(_{50}\)B\(_{20}\)Si\(_{30}\) while total \(f_{\text{NBO}}\) is 0.49 (Table 1 and Figure 8), its contribution from NBOs in BO\(_3\) units is 0.20 and is 0.29 from Q\(_{2}\) and Q\(_{3}\) units. Another interesting question is about the number of NBOs per BO\(_3\) unit in these two glasses, this can be calculated from the N\(_4\) data; the total number of BO\(_3\) units per glass “molecule” in the sample Pb\(_{50}\)B\(_{30}\)Si\(_{30}\) is 33.6 while total number of NBOs in these units is 41.4, hence average number of NBOs per BO\(_3\) unit in this sample is 1.23 which increases to 1.44 in the glass with a higher silica content of 30 mol\% (sample Pb\(_{50}\)B\(_{20}\)Si\(_{30}\)). Hence we conclude that number of NBOs in BO\(_3\) units increases in all three glass series (Figure 7). The increase in N\(_4\) without simultaneous increase in \(f_{\text{NBO}}\) can occur by the reaction:

\[
2[BO_3^\text{2-}] + O^\text{2-} \rightleftharpoons 2[BO_2^\text{4-}] \quad (5)
\]

In case of glasses with a PbO content of 40 mol\%, N\(_4\) shows significant increase from the value of 0.43 in 40PbO–60B\(_2\)O\(_3\) glass to 0.49 in 40PbO–40B\(_2\)O\(_3–20\)SiO\(_2\) glass; this value of N\(_4\) is even higher than its maxima of 0.45 in binary PbO–B\(_2\)O\(_3\) glass (sample Pb50B50) which indicates that silica acts like a promoter and enhances the rate of conversion of BO\(_3\) into BO\(_4^\text{2-}\) by the following two step process:

\[
\begin{align*}
2[SiO_4^\text{2-}] + O^\text{2-} & \rightleftharpoons 2[SiO_3^\text{2-}O^\text{2-}] \quad (6) \\
[BO_2^\text{4-}] + [BO_3^\text{2-}] & \rightleftharpoons [BO_4^\text{2-}] + [SiO_4^\text{2-}] \quad (7)
\end{align*}
\]

With the overall reaction as:

\[
[SiO_4^\text{2-}] + [BO_3^\text{2-}] + O^\text{2-} \rightleftharpoons [BO_4^\text{2-}] + [SiO_4^\text{2-}] \quad (8)
\]

Equation (8) shows that each SiO\(_4\) unit produces one BO\(_4^\text{2-}\) and one Q\(_3\) unit, therefore \(f_{\text{NBO}}\) increases simultaneously. Similar equations can be written for reactions involving Q\(_2\) units, which contain two NBOs per unit. Since the addition of silica into the glasses also changes the relative concentration of B\(_2\)O\(_3\) by increasing the molar ratio, \(R=[\text{PbO}]/[\text{B}_2\text{O}_3]\), a question arises that whether increase in N\(_4\) is due to the increase in \(R\) which will increase [BO\(_4^\text{2-}\)] units concentration by increasing reaction (5) or whether SiO\(_2\) units also play a role in enhancing N\(_4\) by the reaction mechanisms such as (8). This can be understood if we analyze the changes in N\(_4\) and \(f_{\text{NBO}}\) in the glasses.

In the first borosilicate glass series containing 30 mol\% PbO, N\(_4\) increases significantly while \(f_{\text{NBO}}\) decreases slightly on adding 5 and 10 mol\% silica; this indicates that for this particular glass series, increase in N\(_4\) is the dominant factor responsible for increase in N\(_4\) via reaction mechanism (5). On analyzing the changes in N\(_4\) as a function of \(R\) in the three other borosilicate glass series, we realize that borosilicate glass series containing 40 mol\% PbO shows variation in N\(_4\) quite similar to that in binary lead borate glass series, i.e. it has a maxima at \(R=1\), but the value of maxima is higher, i.e. 0.49 at \(R=1\) (sample Pb40B40Si20) compared to N\(_4\)=0.45 at same \(R\) value in sample Pb50B50 (Figure 9).

In the lead borosilicate glass series with 50 mol\%
PbO, N₄ is nearly constant up to 20 mol% silica, while in lead borosilicate glasses with 60 mol% PbO, N₄ initially increases up to a silica content of 10 mol% and then it decreases. It can be therefore concluded that the addition of small concentration of silica (5 to 20 mol%) in borate glasses enhances the fraction of tetrahedral borons in the lead borosilicate network and this enhancement is not only due to changes in molar ratio R, but also due to structural transformations involving SiO₂ units via reaction mechanism (8). Further decrease in N₄ and increase in f_{NBO} at silica concentrations higher than 20 mol%, must be due to reaction mechanisms (2) to (4).

1¹B MAS NMR spectra of borosilicate glass series containing 30, 40 and 50 mol% PbO do not show any changes in the line shape or in the centre of gravity of the BO₃ resonant peak (Figures 4, 5 and Ref. 10), although NBOs are present in BO₃ units and analysis of NMR data indicates that the average number of NBOs per BO₃ unit increases with SiO₂ concentration. Sodium borosilicate and barium borosilicate glasses show a similar increase in N₄ with increasing silica concentration.²⁴,²⁷,³² The results of N₄ in lead borosilicate glasses are similar to those reported for soda lime borosilicate glasses, in which N₄ increases from a value of 0.39 to 0.81 as SiO₂ concentration is increased from 0 to 69.3 mol%.³³

In the glass series with 60 mol% PbO, N₄ rises from 0.39 in the binary 60PbO-40B₂O₃ glass to 0.42 on adding 5 mol% SiO₂ and then decreases slowly to 0.37 at 20 mol% of silica and more rapidly to 0.27 when silica content reaches 30 mol%. It is observed from ¹¹B MAS NMR patterns of these glasses (Figure 6) that there is shift in the centre of gravity of the BO₃ peak from 15.5 to 16.5 ppm at 30 mol% silica, this de-shielding is a signature of generation of more NBOs per BO₃ unit due to the destruction of mixed borate and silicate structural units such as danburite rings.³³ This behaviour is opposite to that reported in sodium borosilicate glasses, which exhibit shifting of the BO₃ NMR peak towards lower ppm values (shielding) with increasing silica concentration.²⁴

Stenz et al. had concluded from time of flight mass spectrometry studies that there is a strong random mixing of borate and silicate structural units in lead borosilicate glasses,³³ this conclusion is however not indicated by the NMR studies of the present work. Weak secondary glass transitions (marked as dotted circles and arrows in Figure 2(a)–(c)) observed at temperatures higher than the primary glass transitions in the DSC patterns of lead borosilicate glasses indicate the existence of phase separated regions that can arise due to demixing of borate and silicate structural groups. Petrovskaya concluded from dilatometry studies that lead borosilicates are characterized by a hidden phase separation, which becomes evident with repeated heat treatment.¹¹ Kim et al. had also concluded from the study of phase diagram on ternary lead borosilicate glasses that there exist two liquids (phase separation) in lead borosilicate glasses containing 30 to 40 mol% PbO.¹⁷

Conclusions

Lead borosilicate glasses were prepared and characterized by density, ¹¹B MAS NMR and DSC studies. Silica at low concentrations of 5 to 10 mol% increases N₄ in the borosilicate network and shifts the maxima in N₄ from 50 mol% PbO in binary lead borates to 40 mol% PbO in ternary lead borosilicate glasses. Lead borate glasses containing 50 mol% PbO were resistant to changes in N₄ on adding silica, but glasses with less than and or more than 50 mol% PbO showed enhancement in N₄. The increase in N₄ with silica revealed that the inter-tetrahedral avoidance between SiO₂ and [BO₃] units in borosilicate glasses is considerably less than that between [AlO₄] and [BO₃] units in aluminoborate glasses. The fraction of NBOs in the glass network increases with silica mol% and the number of NBOs per BO₃ unit also increases, this effect was indicated by de-shielding of the BO₃ NMR peak in glass series containing 60 mol% PbO. Silica incorporation in the borate network decreases the glass transition temperature by 10 to 15°C and simultaneously increases the thermal stability of the glasses against devitrification.

Acknowledgements

Financial support from UGC-DAE-CSIR Mumbai Centre, India is acknowledged. Professor Josef W. Zwanziger, from Dalhousie University, Halifax, Canada and Dr Scott Kroeker from University of Manitoba, Winnipeg, Canada are thanked for providing the MAS NMR facilities.

References

A. KHANNA ET AL: STRUCTURAL CHARACTERIZATION OF PbO–B₂O₃–SiO₂ GLASSES