FINITE CODIMENSIONAL ISOMETRIES ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

JESÚS ARAUJO and JUAN J. FONT

Abstract

Based on the vector-valued generalization of Holsztyński’s theorem by M. Cambern, we provide a complete description of the linear isometries of $C(X,E)$ into $C(Y,F)$ whose range has finite codimension.

1 Introduction.

Throughout this paper, X and Y will stand for compact Hausdorff spaces, and E and F for Banach spaces over the field \mathbb{K} of real or complex numbers. $C(X,E)$ and $C(Y,F)$ will be the Banach spaces of continuous E-valued and F-valued functions defined on X and Y, respectively, endowed with the supremum norm $\|\cdot\|_\infty$. If $E = F = \mathbb{K}$, then we will write $C(X)$ and $C(Y)$ instead of $C(X,E)$ and $C(Y,F)$.

The classical Banach-Stone theorem states that if there exists a linear isometry T of $C(X)$ onto $C(Y)$, then there are a homeomorphism ψ of Y onto X and a continuous map $a : Y \to \mathbb{K}$, $|a| \equiv 1$, such that T can be written as a weighted composition map, that is,

$$(Tf)(y) = a(y)f(\psi(y))$$

for all $y \in Y$ and all $f \in C(X)$.

*2010 Mathematics Subject Classification. Primary 46E40, 47B38.

Keywords: Finite codimensional isometries; Banach-Stone Theorem; strict convexity; weighted composition operators.

†Research of the first author was partially supported by the Spanish Ministry of Science and Education (Grant number MTM2011-23118).

‡Research of the second author was partially supported by the Spanish Ministry of Science and Education (Grant number MTM2011-23118), and by Bancaixa (Projecte P11B2011-30).
An important generalization of the Banach-Stone theorem was given by W. Holsztyński in [13] (see also [3]) by considering non-surjective isometries. Namely, he proved that, in this case, there is a closed subset Y_0 of Y where the isometry can still be represented as a weighted composition map.

This result of Holsztyński was used in [11] (see also [2, 4, 9, 10, 12, 14, 16]) to classify linear isometries on $C(X)$ whose range has codimension 1 as follows: Let $T : C(X) \to C(X)$ be a codimension 1 linear isometry. Then there exists a closed subset X_0 of X such that either

1. $X_0 = X \setminus \{p\}$ where p is an isolated point of X, or
2. $X_0 = X$,

and such that there exists a continuous map h of X_0 onto X and a function $a \in C(X_0), |a| \equiv 1$, such that $(Tf)(x) = a(x) \cdot f(h(x))$ for all $x \in X_0$ and all $f \in C(X)$.

In the context of continuous vector-valued functions, M. Jerison ([18]) investigated the vector analogue of the Banach-Stone theorem: If X and Y are compact Hausdorff spaces and E is a strictly convex Banach space, then every linear isometry T of $C(X, E)$ onto $C(Y, E)$ can be written as a weighted composition map; namely, $(Tf)(y) = \omega(y)(f(\psi(y)))$, for all $f \in C(X, E)$ and all $y \in Y$, where ω is a continuous map from Y into the space of continuous linear operators from E to E (taking values in the subset of surjective isometries) endowed with the strong operator topology. Furthermore, ψ is a homeomorphism of Y onto X. As in the scalar-valued case, Jerison’s results have been extended in many directions (see e.g., [5], [1], [15] or [6]). In particular, M. Cambern obtained in [8] the following formulation of Holsztyński’s theorem for spaces of continuous vector-valued functions.

Theorem 1.1 If F is a strictly convex Banach space, then every linear isometry T of $C(X, E)$ into $C(Y, F)$ can be written as a weighted composition map; namely,

$$(Tf)(y) = J_y(f(h(y))),$$

for all $f \in C(X, E)$ and all $y \in Y_0 \subset Y$, where J is a continuous map from Y into the space $L(E, F)$ of bounded operators from E into F endowed with the strong operator topology, with $\|J_y\| \leq 1$ for all $y \in Y$ and $\|J_y\| = 1$ for $y \in Y_0$. Furthermore, h is a continuous function of Y_0 onto X. If E is finite-dimensional, then Y_0 is a closed subset of Y.
Let us recall that there are counter-examples (see [7] or [18]) which show that all the above results may not hold if the assumption of strict convexity is not observed.

In this paper we provide, based on this theorem of Cambern, a complete description of the linear isometries of $C(X, E)$ into $C(Y, F)$, E and F strictly convex, whose range has finite codimension n_0.

2 Preliminaries and main results.

Given a continuous linear operator $T : C(X, E) \rightarrow C(Y, F)$, the map

$$J : Y \rightarrow L(E, F)$$

$$y \mapsto J_y$$

given by $J_y(e) := (T\hat{e})(y)$ for all $e \in E$ (being \hat{e} the function constantly equal to e) is well defined and continuous when, as usual, $L(E, F)$ is endowed with the strong operator topology. Furthermore, $\|J_y\| \leq \|T\|$ for all $y \in Y$.

On the other hand, we can define three subsets of Y as follows:

\begin{align*}
Y_3 & := \{y \in Y : (Tf)(y) = 0 \ \forall f \in C(X, E)\}; \\
Y_1 & := \{y \in Y \setminus Y_3 : \exists x_y \in X \text{ such that } (Tf)(y) = 0 \text{ if } f(x_y) = 0, f \in C(X, E)\}; \\
Y_2 & := Y \setminus (Y_1 \cup Y_3).
\end{align*}

It is easy to see that the point $x_y \in X$ corresponding to each $y \in Y_1$ is uniquely determined, so if we define $h : Y_1 \rightarrow X$ by $h(y) := x_y$, then

$$(Tf)(y) = J_y(f(h(y)))$$

for every $f \in C(X, E)$ and $y \in Y_1$. Summing up, Y_1 coincides with the subset of Y where T can be written as a (nontrivial) weighted composition map. This implies that, given any $y_0 \in Y_1$ and a neighborhood U of $\overline{h}(y_0)$ in X, there exists $f \in C(X, E)$ such that $f \equiv 0$ outside U and $(Tf)(y_0) \neq 0$, so the set V of all $y \in Y_1$ with $(Tf)(y) \neq 0$ is an open neighborhood of y_0 in Y_1. Now it is clear that $h(V_1) \subset U$, and the fact that h is continuous follows easily.

Recall that a Banach space E is said to be strictly convex if every element of its unit sphere is an extreme point of the closed unit ball of E. It is well-known that if E is strictly convex and $e_1, e_2 \in E \setminus \{0\}$, then $\|e_1 + e_2\|$ =
\|e_1\| + \|e_2\| \text{ implies } e_1 = r e_2 \text{ for some positive real } r \text{ (see [19, pp. 332–336]). From this, it is straightforward to see that }

\|e_1\|, \|e_2\| < \max\{\|e_1 + e_2\|, \|e_1 - e_2\|\}

whenever \(e_1, e_2 \in E \setminus \{0\} \).

From now on, \(E \) and \(F \) will be strictly convex normed spaces (see Remark 2.1 below). Also, \(T \) will be a linear isometry of \(C(X, E) \) into \(C(Y, F) \) whose range has finite codimension \(n_0 \geq 1 \).

For a function \(f \in C(X, E) \), we will write \(c(f) \) to denote the cozero set of \(f \), that is, \(c(f) := \{x \in X : f(x) \neq 0\} \). If \(V \) is a subset of \(X \), we will write \(\text{cl} V \) to denote its closure in \(X \).

We rephrase the formulation of Holsztyński’s theorem for spaces of continuous vector-valued functions obtained by M. Cambern in [8].

Theorem 2.1 (Cambern) The restriction of \(\overline{h} \) to \(Y_0 := \{y \in Y_1 : \|J_y\| = 1\} \) is a continuous function onto \(X \). Also, if \(E \) is finite-dimensional, then \(Y_0 \) is a closed subset of \(Y \).

We denote by \(h \) the restriction of \(\overline{h} \) to \(Y_0 \). We then have that \(h : Y_0 \longrightarrow X \) is continuous and surjective, and that for \(y \in Y_1 \setminus Y_0 \), the mapping \(J_y : E \longrightarrow F \) defined by

\[J_y(e) := (T \hat{e})(y) \]

is linear and continuous and its norm is less than 1.

Points in \(Y_1 \) can be classified into two disjoint categories:

\[Y_{10} := \{y \in Y_1 : J_y \text{ is an isometry}\} ; \]
\[Y_{11} := \{y \in Y_1 : J_y \text{ is not an isometry}\} . \]

We shall see that \(Y_{11} \cup Y_2 \cup Y_3 \) consists of finitely many isolated points of \(Y \). Indeed, if \(F \) is assumed to be infinite-dimensional, then it will be proved that \(Y_{11} \cup Y_2 \cup Y_3 \) is empty, that is, \(Y = Y_0 = Y_{10} \).

Related to the subsets \(Y_0 \) and \(Y_1 \) and the corresponding maps \(h \) and \(\overline{h} \), we consider, for each \(x \in X \), the sets

\[F_x := \{y \in Y_0 : h(y) = x\} \]
and
\[G_x := \{ y \in Y_1 : \overline{h}(y) = x \}. \]

It will turn out that \(G_x \) (and consequently \(F_x \)) is finite for every \(x \in X \).

Prior to providing the description of \(T \), we still need to classify the points of \(X \) into three not necessarily disjoint classes that will be widely used in the paper:

\[
\begin{align*}
 A_0 & := \{ x \in X : \exists y \in F_x \text{ with } J_y \text{ not a surjective isometry} \}; \\
 A_1 & := \{ x \in X : x \notin A_0, \text{card } G_x = 1 \}; \\
 A_2 & := \{ x \in X : \text{card } G_x \geq 2 \}.
\end{align*}
\]

We shall prove that \(A_0 \) and \(A_2 \) are finite.

Summarizing, there exists \(J : Y \rightarrow L(E,F) \) continuous with respect to the strong operator topology and \(\overline{h} : Y_1 \rightarrow X \) continuous and surjective such that \((Tf)(y) = J_y(f(\overline{h}(y))) \) for all \(f \in C(X,E) \) and \(y \in Y_1 \). We next state (in full) the main results, where we keep the notation above.

Theorem 2.2 Let \(X, Y \) be compact Hausdorff spaces, \(E, F \) be strictly convex Banach spaces, and \(T : C(X,E) \rightarrow C(Y,F) \) be a linear isometry. Suppose that the range of \(T \) has finite codimension \(n_0 \geq 1 \).

If \(F \) is infinite-dimensional, then there exist a finite subset \(Y_N \) of \(Y \) and a surjective homeomorphism \(h : Y \rightarrow X \) such that
\[
(Tf)(y) = J_y(f(h(y))),
\]
for all \(f \in C(X,E) \) and all \(y \in Y \). Here, \(J_y : E \rightarrow F \) is an isometry for all \(y \in Y \), and it is surjective whenever \(y \notin Y_N \).

Moreover,
\[
\sum_{y \in Y_N} \text{codim (ran } J_y) = n_0.
\]

The finite-dimensional case turns out to be more intricate. First it is apparent that, since \(\overline{h} \) is surjective, if \(Y \) is finite, then \(X \) is also finite. Consequently, it is clear that \(n_0 = (\text{dim } F)(\text{card } Y) - (\text{dim } E)(\text{card } X) \). Next we study the case when \(Y \) is infinite.

Theorem 2.3 Let \(X, Y \) be compact Hausdorff spaces, \(E, F \) be strictly convex Banach spaces, and \(T : C(X,E) \rightarrow C(Y,F) \) be a linear isometry. Suppose that the range of \(T \) has finite codimension \(n_0 \geq 1 \).
If \(F \) is finite-dimensional and \(Y \) is infinite, then there exists a cofinite subset \(Y_1 \) of \(Y \) and a continuous surjection \(h: Y_1 \rightarrow X \) such that
\[
(Tf)(y) = J_y(f(h(y)))
\]
for all \(f \in C(X,E) \) and \(y \in Y_1 \).

Furthermore, the set of all \(y \in Y \) for which \(J_y: E \rightarrow F \) is a surjective isometry is clopen, its complement is finite and
\[
n_0 = (\dim F) \left(\text{card}(Y \setminus Y_1) + \text{card} h^{-1}(A_2) - \text{card} A_2 \right),
\]
where \(A_2 = \{ x \in X : \text{card} h^{-1}(x) \geq 2 \} \).

Remark 2.1 Theorem 2.3 does not hold in general if \(E \) (or \(F \)) is not strictly convex. For instance, suppose that, for \(F = \mathbb{K} \) and \(E = \mathbb{K}^2 \) endowed with the sup norm, and \(Y \) being the topological sum of two copies \(X \times \{1\}, X \times \{2\} \) of \(X \) and \(n_0 \) isolated points \(p_i \). It is easy to see that the map \(T: C(X,E) \rightarrow C(Y,F) \) defined, for each \(f \in C(X,E) \), by \((Tf)(x,i) := \langle f(x), e_i \rangle \) (where \(\{e_1, e_2\} \) is the canonical basis in \(\mathbb{K}^2 \)), and \((Tf)(p_j) := 0 \) for all \(j \), is a linear isometry with codimension \(n_0 \). As in [17], it can be checked that \(T \) is not a weighted composition map.

3 Some technical lemmas.

Lemma 3.1 The set \(A_0 \) is finite.

Proof. Suppose, contrary to what we claim, that \(A_0 \) is infinite. Then we can find pairwise distinct \(x_1, x_2, \ldots, x_{n_0+1} \in A_0 \). For \(i = 1, 2, \ldots, n_0 + 1 \), we choose \(y_i \in F_{x_i} \) with \(J_{y_i} \) not a surjective isometry. Next we divide the set \(\{1, 2, \ldots, n_0 + 1\} \) into three mutually disjoint subsets. Namely,
\[
I_1 := \{ i \in \{1, 2, \ldots, n_0 + 1\} : J_{y_i} \text{ isometry} \};
\]
\[
I_2 := \{ i \in \{1, 2, \ldots, n_0 + 1\} : J_{y_i} \text{ not injective} \};
\]
\[
I_3 := \{ i \in \{1, 2, \ldots, n_0 + 1\} : J_{y_i} \text{ injective but not isometry} \}.
\]

Let \(i \in I_2 \). Then there is \(e_i \in E \) with \(\|e_i\| = 1 \) and \(J_{y_i}(e_i) = 0 \). Take \(f_i \in C(X) \) such that \(0 \leq f_i \leq 1 \), \(f_i(x_i) = 1 \), and \(f_i(x_j) = 0 \) for \(j \neq i \). It is
clear that, if we put \(k_i := f_i e_i \in C(X, E) \), then \(\|k_i\|_\infty = 1 \) and \((Tk_i)(y_i) = 0 \). Furthermore, for \(j \neq i, 1 \leq j \leq n_0 + 1 \), we have that
\[
 k_i(x_j) = k_i(h(y_j)) = 0.
\]
Hence, \((Tk_i)(y_j) = 0 \).

Consequently, for each \(i \in I_2 \), the set
\[
 V_i := \left\{ y \in Y : \|Tk_i(y)\| < \frac{1}{2} \right\}
\]
is open in \(Y \) and contains \(y_j \) for all \(j \). For the same reason, if we define \(V := Y \) if \(I_2 = \emptyset \) and otherwise, then \(V \) is an open neighborhood of \(y_j \) for all \(j \in \{1, 2, \ldots, n_0 + 1\} \).

Next we consider pairwise disjoint open neighborhoods \(V'_i \) of \(y_i \) in \(Y \) for all \(i \in \{1, 2, \ldots, n_0 + 1\} \), and define
\[
 W_i := V'_i \cap V.
\]

It is clear that \(W_i \cap W_j = \emptyset \) if \(i \neq j \) and that \(y_i \in W_i \) for all \(i \).

Next we consider, for each \(i \in \{1, 2, \ldots, n_0 + 1\} \), a function \(g_i \in C(Y) \) such that \(0 \leq g_i \leq 1 \), \(c(g_i) \subset W_i \) and \(g_i(y_i) = 1 \), and a vector \(f_i \in F \) given as follows:

1. If \(i \in I_1 \), then we choose \(f_i \notin \text{ran} J_{y_i} \) with \(\|f_i\| = 1 \).

2. If \(i \in I_2 \cup I_3 \), then we take a norm-one \(e'_i \in E \) with \(0 < \|J_{y_i}(e'_i)\| < 1 \), and define \(f_i := J_{y_i}(e'_i) \).

As the codimension of the range of \(T \) is \(n_0 \), there exist \(a_1, \ldots, a_{n_0 + 1} \in \mathbb{K} \) such that \(g := \sum_{i=1}^{n_0 + 1} a_i g_i f_i \neq 0 \) belongs to the range of \(T \). Let us choose \(i_0 \) such that \(\|g\|_\infty = |a_{i_0}| \|f_{i_0}\| \). We claim that \(i_0 \in I_2 \) (so \(I_2 \neq \emptyset \)).

Let \(f \in C(X, E) \) with \(Tf = g \). If we fix \(i \in I_1 \), then
\[
 a_i f_i = (Tf)(y_i) = J_{y_i}(f(h(y_i))).
\]

This is to say that \(a_i f_i \) belongs to the range of \(J_{y_i} \) and, since \(i \in I_1 \), we get \(a_i = 0 \). Hence \(i_0 \notin I_1 \). Next, if \(i \in I_3 \), then \(g(y_i) = J_{y_i}(f(x_i)) \), and also
\(g(y_i) = a_i f_i = a_i J_{y_i}(e'_i)\), implying that \(|a_i| = |a_i| \|e'_i\| = \|f(x_i)\| \leq \|g\|_\infty\).

Hence \(|a_i| \|f_i\| < \|g\|_\infty\) and \(i_0 \notin I_3\), as we wanted to prove.

Since \(\|g\|_\infty = |a_{i_0}| \|f_{i_0}\| = \|J_{y_{i_0}}(f(x_{i_0}))\|\), we deduce that \(f(x_{i_0}) \neq 0\) and, since \(E\) is strictly convex, it is now clear that either
\[
\|k_{i_0}(x_{i_0}) + f(x_{i_0})\| > 1
\]
or
\[
\|k_{i_0}(x_{i_0}) - f(x_{i_0})\| > 1,
\]
that is, either \(\|k_{i_0} + f\|_\infty > 1\) or \(\|k_{i_0} - f\|_\infty > 1\).

With no loss of generality, we shall assume that \(\|g\|_\infty = \frac{1}{2}\).

We claim that \(\|Tk_i \pm g\|_\infty \leq 1\) for all \(i\). To this end, fix \(y \in Y\) and assume first that \(y \in c(g)\), so \(y \in V\). Hence \(\|(Tk_i)(y)\| < 1/2\) and, consequently, \(\|(Tk_i \pm g)(y)\| < 1\). Assume next that \(y \notin c(g)\), which is to say that \(g(y) = 0\). Then, since \(\|k_i\|_\infty = 1\), \(\|(Tk_i \pm g)(y)\| \leq 1\). Hence
\[
\|Tk_i \pm g\|_\infty \leq 1.
\]

This contradicts the isometric property of \(T\), and we are done. \(\square\)

The proof of the following lemma is immediate.

Lemma 3.2 Let \(x \in X\) and let \(y_1, y_2 \in G_x\) with \(J_{y_1}\) injective. If \(g \in C(Y, F)\) satisfies \(g(y_1) = 0\) and \(g(y_2) \neq 0\), then \(g \notin \text{ran} T\).

Lemma 3.3 The set \(A_2\) is finite.

Proof. Suppose, contrary to what we claim, that \(A_2\) is infinite. Then, since \(A_0\) is finite by Lemma 3.1, we can find pairwise distinct \(x_1, x_2, \ldots, x_{n_0+1}\) in \(A_2 \setminus A_0\). For each \(i = 1, 2, \ldots, n_0 + 1\), we choose two distinct elements \(y^1_i, y^2_i\) in \(G_x\). Since \(h\) is onto, we can assume that \(y^1_i \in F_{x_i}\) for all \(i\).

Also for each \(i\), we can choose a function \(g_i \in C(Y, F)\) such that
\begin{itemize}
 \item \(g_i(y^2_j) \neq 0\) and \(g_i(y^2_j) = 0\) for \(j \neq i\).
 \item \(g_i(y^1_j) = 0\) for all \(j = 1, 2, \ldots, n_0 + 1\).
\end{itemize}

By Lemma 3.2, no nonzero linear combination of the \(g_i\) belongs to \(\text{ran} T\), which is impossible. \(\square\)

Lemma 3.4 For each \(x \in X\), the set \(G_x\) is finite.
Proof. Suppose, contrary to what we claim, that there is \(x_0 \in X \) such that \(G_{x_0} \) is infinite.

First, if there exists \(y_0 \in G_{x_0} \) such that \(J_{y_0} \) is injective, then we take \(y_1, y_2, \ldots, y_{n_0+1} \in G_{x_0} \) pairwise distinct and different from \(y_0 \). For each \(i \in \{1, 2, \ldots, n_0+1\} \) we choose a function \(g_i \in C(Y,F) \) such that \(g_i(y_i) \neq 0 \) and \(g_i(y_j) = 0 = g_i(y_0) \) for \(j \neq i \). Using Lemma 3.2, no nontrivial linear combination of the \(g_i \) belongs to \(\text{ran} \ T \). We conclude that, for all \(y \in G_{x_0} \), \(J_y \) is not injective.

We shall prove that this is also impossible. To this end, let us first see that

\[
G_{x_0} \cap \text{cl} (h^{-1}(X \setminus A_0)) = \emptyset.
\]

If \(y \in G_{x_0} \), then there exists \(e_y \in E, \|e_y\| = 1 \), such that \(J_y(e_y) = 0 \). On the other hand, given \(y' \in h^{-1}(X \setminus A_0) \), \(J_{y'} \) is an isometry and, consequently, \(\|J_{y'}(e_y)\| = 1 \). In other words, we have that \((T \hat{e}_y)(y) = 0 \) and, for all \(y' \in h^{-1}(X \setminus A_0) \), \(\|T \hat{e}_y(y')\| = 1 \). This yields \(y \notin \text{cl} (h^{-1}(X \setminus A_0)) \).

Since we are assuming that \(G_{x_0} \) is infinite, we can now consider two subsets of \(G_{x_0} \), \(\{y_1, \ldots, y_{n_0+1}\} \) and \(\{y_2, \ldots, y_{n_0+1}\} \), consisting of \(2n_0 + 2 \) pairwise distinct elements.

Let us also consider, for each \(i \in \{1, 2, \ldots, n_0+1\} \) and each \(j \in \{1, 2\} \), an open neighborhood \(U_i^j \) of \(y_i^j \) such that \(U_i^j \cap h^{-1}(X \setminus A_0) = \emptyset \). Clearly, we can assume that these \(2n_0 + 2 \) sets are pairwise disjoint, and then take functions \(g_i^j \in C(Y,F) \) such that \(c(g_i^j) \subset U_i^j \) and \(\|g_i^j(y_i^j)\| = 1 = \|g_i^j\|_\infty \), for all \(i, j \).

Then we have two nonzero functions \(g_1 := \sum_{i=1}^{n_0+1} \alpha_i g_i^1 \) and \(g_2 := \sum_{i=1}^{n_0+1} \beta_i g_i^2 \) in the range of \(T \), that is, \(Tf_1 = g_1 \) and \(Tf_2 = g_2 \) for some \(f_1, f_2 \in C(X,E) \). Assume, without loss of generality, that \(\|g_1\|_\infty = \|g_2\|_\infty = 1 \).

Since \(g_i \equiv 0 \) on \(h^{-1}(X \setminus A_0) \) \((i = 1, 2) \), we infer that \(f_i \equiv 0 \) on \(X \setminus A_0 \). However, if \(f_i(x_0) = 0 \), then \(g_i(y) = 0 \) for all \(y \in G_{x_0} \). Consequently, \(f_i(x_0) \neq 0 \) for \(i = 1, 2 \). As \(A_0 \) is finite and \(x_0 \in A_0 \), we deduce that \(\{x_0\} \) is an open set. Then we can write the functions \(f_i \) as

\[
f_i = f_i \chi_{(x_0)} + f_i \chi_{A_0 \setminus \{x_0\}}.
\]

As \(f_i \chi_{A_0 \setminus \{x_0\}}(x_0) = 0 \), then \((Tf_i \chi_{A_0 \setminus \{x_0\}})(y) = 0 \) for all \(y \in G_{x_0} \), so \((Tf_i \chi_{\{x_0\}})(y) = (Tf_i)(y) \) for all \(y \in G_{x_0} \).

Hence, since each \(\|Tf_i(y)\| = \|g_i(y)\| \) attains its maximum in \(G_{x_0} \),

\[
\|Tf_i \chi_{\{x_0\}}\|_\infty \geq \|Tf_i\|_\infty = 1,
\]

Therefore, \(f_i \) is nonzero.
implying that \(\|Tf_i\chi_{\{x_0\}}\|_\infty = 1 \). This yields \(\|f_i(x_0)\| = 1, i = 1, 2 \). As a consequence, either \(\|f_1(x_0) + f_2(x_0)\| > 1 \) or \(\|f_1(x_0) - f_2(x_0)\| > 1 \), which implies that either

\[
\|Tf_1 + Tf_2\|_\infty > 1
\]

or

\[
\|Tf_1 - Tf_2\|_\infty > 1.
\]

These inequalities contradict the fact that \(\|g_1 \pm g_2\|_\infty = \max (\|g_1\|_\infty, \|g_2\|_\infty) = 1 \).

\[\square\]

Lemma 3.5 The set \(Y_3 \) is finite.

Proof. Suppose that there exist \(n_0 + 1 \) distinct points \(y_1, \ldots, y_{n_0 + 1} \) in \(Y_3 \). Let us choose \(n_0 + 1 \) functions \(g_1, \ldots, g_{n_0 + 1} \) in \(C(Y,F) \) such that \(g_i(y_j) = 0 \) if \(i \neq j \) and \(g_i(y_i) \neq 0 \) for \(i \in \{1, \ldots, n_0 + 1\} \). It is apparent that no nonzero linear combination of \(\{g_1, \ldots, g_{n_0 + 1}\} \) belongs to the range of \(T \), which is impossible.

Lemma 3.6 The set \(Y_2 \) is finite and each point of \(Y_2 \) is isolated in \(Y \).

Proof. We first check that \(Y_2 \cap \text{cl} Y_1 = \emptyset \). Obviously, \(Y_2 \cap Y_1 = \emptyset \).

First, by Lemmas 3.1, 3.3 and 3.4, \(\overline{h}^{-1}(A_0 \cup A_2) \) is finite. Since \(X = A_0 \cup A_2 \cup A_1 \), in order to prove that \(Y_2 \cap \text{cl} Y_1 = \emptyset \), it suffices to check that

\[
Y_2 \cap \text{cl}(\overline{h}^{-1}(A_1)) = \emptyset,
\]

which, by the definition of \(A_1 \), is the same as proving \(Y_2 \cap \text{cl}(h^{-1}(A_1)) = \emptyset \).

Let \(y_0 \in \text{cl}(h^{-1}(A_1)) \) and consider, for \(f \in C(X,E) \) and \(\epsilon > 0 \), the set

\[
K(f, \epsilon) := \{ x \in X : \|f(x)\| - \|(Tf)(y_0)\| \leq \epsilon \}.
\]

Each of these is a closed subset of \(X \), which is also nonempty as a consequence of the fact that, for each \(y \in h^{-1}(A_1) \), \(\|f(h(y))\| = \|(Tf)(y)\| \). We are going to check that the family of all these sets satisfies the finite intersection property. Indeed, we shall prove that if \(f_1, \ldots, f_n \in C(X,E) \) and \(\epsilon_1, \ldots, \epsilon_n > 0 \), then

\[
\bigcap_{i=1}^n K(f_i, \epsilon_i) \neq \emptyset.
\]
The set
\[
U := \bigcap_{i=1}^{n} \left\{ y \in Y : \| (Tf_i)(y) - (Tf_i)(y_0) \| < \epsilon_i \right\}
\]
is an open neighborhood of \(y_0\) and, by assumption, there exists \(y_1 \in h^{-1}(A_1) \cap U\). Then
\[
\| (Tf_i)(y_1) \| - \| (Tf_i)(y_0) \| < \epsilon_i
\]
for \(i = 1, 2, \ldots, n\). On the other hand, for each \(i\), \((Tf_i)(y_1) = J_{y_1}(f_i(h(y_1)))\) and, as \(J_{y_1}\) is a surjective isometry, we have that \(\| (Tf_i)(y_1) \| = \| f_i(h(y_1)) \|\). Consequently,
\[
\| f_i(h(y_1)) \| - \| (Tf_i)(y_0) \| < \epsilon_i,
\]
which implies that, as was to be proved,
\[
h(y_1) \in \bigcap_{i=1}^{n} K(f_i, \epsilon_i).
\]

Hence, since \(X\) is compact, there exists
\[
x_0 \in \bigcap_{\epsilon > 0} K(f, \epsilon).
\]

By definition, we deduce that, for every \(f \in C(X, E), \| f(x_0) \| = \| (Tf)(y_0) \|\). In particular, if \(f(x_0) = 0\), then \((Tf)(y_0) = 0\), and consequently \(y_0 \notin Y_2\). This contradiction yields
\[
Y_2 \cap \text{cl} Y_1 = \emptyset.
\]
Now, as \(Y_2 = Y \setminus (Y_3 \cup \text{cl} Y_1)\) and \(Y_3\) is a finite set, we infer that \(Y_2\) is open.

Next, suppose that \(Y_2\) contains infinitely many elements. Then there exist \(n_0 + 1\) pairwise disjoint open subsets \(V_1, \ldots, V_{n_0+1}\) contained in \(Y_2\). For each \(i \in \{1, 2, \ldots, n_0 + 1\}\), we can take \(g_i \in C(Y, F)\), \(g_i \neq 0\), with \(c(g_i) \subset V_i\). From the finite codimensionality of the range of \(T\), we infer that there exists a nonzero linear combination \(g := \sum_{i=1}^{n_0+1} \alpha_i g_i\) in the range of \(T\), that is, there exists \(f \in C(X, E)\) such that \(Tf = g\). Then, it is apparent that \(g(h^{-1}(X)) \equiv 0\) and, in order to get a contradiction, it suffices to check that \(f(X) \equiv 0\). To this end, note that, by definition, if \(x \notin A_0\), then, given \(y \in F_x, J_y\) is an isometry. Hence, \(0 = (Tf)(y) = J_y(f(x))\) yields \(f(x) = 0\), which is to say that \(f \equiv 0\) on \(X\) except perhaps on a finite set \(\{x_1, \ldots, x_n\} \subset A_0\). Then we can write \(f = f \chi_{\{x_1\}} + \ldots + f \chi_{\{x_n\}}\). Also
for each \(y \in Y_1 \), there exists at most one \(i \) such that \((Tf\chi_{\{x_i\}})(y) \neq 0 \) because in that case, necessarily, \(T(x) = x_i \). We then infer that \(T(x) \equiv 0 \) on \(Y_1 \) for all \(i \). Hence there exists \(y_1 \in Y_2 \) such that \(\| (Tf\chi_{\{x_i\}})(y_1) \| = \| Tf\chi_{\{x_i\}} \|_\infty \neq 0 \) for some \(i \in \{1, \ldots, n\} \). Since \(y_1 \in Y_2 \), we can find \(k \in C(X, E) \) such that \(k(x_i) = 0 \) and \((Tk)(y_1) \neq 0 \). If we suppose, with no loss of generality, that \(\|k\| = \|f\chi_{\{x_i\}}\|_\infty = 1 \), then \(\| k \pm f\chi_{\{x_i\}} \|_\infty = 1 \), but either \(\| (Tf\chi_{\{x_i\}})(y_1) + (Tk)(y_1) \| > 1 \) or \(\| (Tf\chi_{\{x_i\}})(y_1) - (Tk)(y_1) \| > 1 \), which is impossible. \(\Box \)

Lemma 3.7 The set \(Y_{11} \cup Y_2 \cup Y_3 \) is finite, and all of its points are isolated in \(Y \).

Proof. We already know, by Lemma 3.6, that the result is true for \(Y_2 \). On the other hand, it is apparent that

\[
Y_{11} \subset \bigcup_{x \in X \setminus A_0} (G_x \setminus F_x) \cup \bigcup_{x \in A_0} G_x.
\]

Since \(A_0, A_2 \) and \(G_x \) are finite sets (see Lemmas 3.1, 3.3 and 3.4), then we deduce that \(Y_{11} \) is finite. Also, for any \(e \in E \), \(\|e\| = 1 \), the open set \(C_e := \{ y \in Y : \|(T\hat{e})(y)\| < 1 \} \) is contained in the finite set \(Y_{11} \cup Y_2 \cup Y_3 \), which implies that \(C_e \) consists of isolated points. If \(y_0 \in Y_{11} \), then there exists \(e \in E \) such that \(\|e\| = 1 \) and \(\|(T\hat{e})(y_0)\| = \|J_{y_0}(e)\| < 1 \), which is to say that \(y_0 \in C_e \), that is, it is isolated.

A similar reasoning shows that every element of \(Y_3 \) is isolated in \(Y \). \(\Box \)

Corollary 3.1 \(Y_1 \) is a clopen subset of \(Y \).

4 The infinite-dimensional case

In this section we shall assume that \(F \) is infinite-dimensional. Our first result shows that \(J_y \) is an isometry for all \(y \in Y \).

Lemma 4.1 \(Y_{11} \cup Y_2 \cup Y_3 = \emptyset \).

Proof. Suppose that \(y_0 \in Y_{11} \cup Y_2 \cup Y_3 \) and consider \(n_0 + 1 \) linearly independent vectors \(g_1, \ldots, g_{n_0 + 1} \in F \). Since \(\{y_0\} \) is a clopen subset (Lemma 3.7),
then \(\chi_{\{y_0\}} g_1, \ldots, \chi_{\{y_0\}} g_{n_0+1} \) belong to \(C(Y,F) \) and are linearly independent. Then, there exists a nonzero linear combination

\[
g := \sum_{i=1}^{n_0+1} \alpha_i \chi_{\{y_0\}} g_i
\]

in the range of \(T \).

It is apparent that \(g(h^{-1}(X \setminus A_0)) \equiv 0 \). Hence, \(f := T^{-1} g \) satisfies \(f(X \setminus A_0) \equiv 0 \) and, if we write \(A_0 = \{x_1, \ldots, x_k\} \) (see Lemma 3.1), then \(f = f \chi_{\{x_1\}} + \ldots + f \chi_{\{x_k\}} \). As \(g(y_0) \neq 0 \), we infer that \(y_0 \notin Y_3 \). Hence we only have two possible cases:

1. \(y_0 \in Y_2 \)
2. \(y_0 \in Y_{11} \)

Before studying these cases, we need some preparation. With no loss of generality, we can assume that \(\|g\|_\infty = \|f\|_\infty = 1 \). Hence, there exists \(j \in \{1, \ldots, k\} \), say \(j = 1 \), such that \(\|f(x_1)\| = 1 \). Let us now check that \(f(x_2) = \cdots = f(x_k) = 0 \). To this end, we define

\[
f_1 := f \chi_{\{x_1\}} \quad \text{and} \quad f_2 := f \chi_{\{x_2, \ldots, x_k\}}.
\]

Claim 4.1 \(Tf_1 = g \).

As \(\|f(x_1)\| = 1 \), there is \(y_1 \in Y \) with \(\|(Tf_1)(y_1)\| = 1 \). Besides, as \(f_1 \equiv 0 \) on \(X \setminus \{x_1\} \), \(y_1 \notin G_x \) for any \(x \neq x_1 \), which is to say that \(y_1 \in G_{x_1} \cup Y_2 \). Therefore, if \(y_1 \neq y_0 \), then we have

\[
\|T(f_1 - f_2)(y_1)\| = \|(Tf_1)(y_1) - (Tf)(y_1) + (Tf_1)(y_1)\| = 2\|Tf_1(y_1) - g(y_1)\| = \|2(Tf_1)(y_1)\| = 2
\]

but

\[
\|f_1 - f_2\|_\infty = \|f_1(x_1)\| \neq 1.
\]

This contradiction yields \(y_1 = y_0 \) and, consequently, \(\|(Tf_1)(y_0)\| = 1 \).

On the other hand, let us check that \((Tf_2)(y_0) = 0 \). If this is not the case, then \(\|f_1 + f_2\|_\infty = 1 = \|f_1 - f_2\|_\infty \), but as \(F \) is strictly convex, then either

\[
\|(Tf_1)(y_0) + (Tf_2)(y_0)\| > 1
\]

13
or
\[\| (Tf_1)(y_0) - (Tf_2)(y_0) \| > 1, \]
which is impossible since \(T \) is an isometry.

Consequently, for \(y_2 \in Y \setminus \{y_0\} \) with \(\| (Tf_2)(y_2) \| = \| Tf_2 \|_\infty \leq 1 \), we have
\((Tf_1)(y_2) = -(Tf_2)(y_2) \). Also, if \(Tf_2 \neq 0 \), then either
\[\| (Tf_1)(y_2) + \frac{(Tf_2)(y_2)}{\| Tf_2 \|_\infty} \| > 1 \]
or
\[\| (Tf_1)(y_2) - \frac{(Tf_2)(y_2)}{\| Tf_2 \|_\infty} \| > 1, \]
contrary to the fact that
\[\| f_1 \pm \frac{f_2}{\| Tf_2 \|_\infty} \|_\infty = 1. \]

This contradiction yields \(f_2 \equiv 0 \), which is to say that \(Tf_1 = g \). The proof of the claim is done.

Case 1 If we suppose that \(y_0 \in Y_2 \), then there exists \(f_3 \in C(X,E) \) such that \(\| f_3 \|_\infty = 1 \), \(f_3(x_1) = 0 \) and \((Tf_3)(y_0) \neq 0 \). It is clear that \(\| f_3 + f_1 \|_\infty = 1 = \| f_3 - f_1 \|_\infty \) but either
\[\| (Tf_3 + Tf_1)(y_0) \| > 1 \]
or
\[\| (Tf_3 - Tf_1)(y_0) \| > 1. \]
This contradiction shows that \(y_0 \not\in Y_2 \).

Case 2 Assume finally that \(y_0 \in Y_{11} \), that is, \(J_{y_0} \) is not an isometry. Hence we know that there exists \(e \in E \), \(\| e \| = 1 \), such that \(\| J_{y_0}(e) \| < 1 \). Let us define
\[\alpha = 1 - \| J_{y_0}(e) \| \]
and
\[f_3 := \chi_{\{x_1\}} e. \]
It is clear that \(\| f_3 \|_\infty = 1 \) and \(\| (Tf_3)(y_0) \| = \| J_{y_0}(e) \| < 1 \). On the other hand
\[\| (T(\alpha f_1 \pm f_3))(y_0) \| \leq \alpha \| (Tf_1)(y_0) \| + \| (Tf_3)(y_0) \| = 1. \]
Also if \(y \neq y_0 \), \((Tf_1)(y) = 0\) and \(\|(Tf_3)(y)\| \leq \|Tf_3\|_{\infty} = 1 \). Consequently
\[
\|(T(\alpha f_1 \pm f_3))\|_{\infty} \leq 1.
\]
However, either
\[
\|\alpha f_1(x_1) + f_3(x_1)\| > 1
\]
or
\[
\|\alpha f_1(x_1) - f_3(x_1)\| > 1
\]
which contradicts the isometric condition of \(T \). The lemma is proved. \(\Box \)

Lemma 4.2 \(Y = Y_0 \) and \(h : Y \to X \) is a surjective homeomorphism. Moreover \(J_y \) is an isometry for every \(y \in Y \). Furthermore, the set \(Y_N \subset Y \) of all \(y \) such that \(J_y \) is not surjective is finite.

Proof. By Lemma 4.1, \(Y = Y_{10} \), so every \(J_y \) is an isometry and \(Y = Y_0 \).

Suppose next that there exists \(x_0 \in X \) with \(\operatorname{card} G_{x_0} \geq 2 \), and take \(y_1, y_2 \in G_{x_0} \), \(y_1 \neq y_2 \). Pick \(g = Tf \in C(Y, F) \) with \(g(y_1) = 0 \). By Lemma 3.2, \(g(y_2) = 0 \), which is impossible because \(\operatorname{codim} \langle \operatorname{ran} T \rangle \) is finite. We deduce that, for all \(x \in X \), \(\operatorname{card} G_x = 1 \), and consequently \(F_x = G_x \). We infer that \(h \) is injective and, since it is a continuous surjection and \(Y \) is compact, then \(h \) is a surjective homeomorphism.

Finally, let us note that, if \(h(y) \notin A_0 \), then \(J_y \) is a surjective isometry. Consequently, as \(A_0 \) is finite, so is \(Y_N \). \(\Box \)

Proposition 4.1 Let \(g \in C(Y, F) \) be such that \(g(y) \in \operatorname{ran} J_y \) for all \(y \in Y \). Then \(g \in \operatorname{ran} T \).

Proof. By Lemma 4.2, given \(x \in X \),
\[
J_{h^{-1}(x)} : E \to F
\]
is a linear isometry which is also surjective except for finitely many \(x \in h(Y_N) \), being \(Y_N := \{y_1, \ldots, y_k\} \).

Fix any \(x_0 \in X \) and take an open neighborhood \(V \) of \(h^{-1}(x_0) \) such that \(V \cap h^{-1}(x_0) \subset \{h^{-1}(x_0)\} \). Hence, for all \(y \in V \setminus \{h^{-1}(x_0)\} \), we have that \(J_y \) is a surjective isometry.

Claim 4.2 Let \(f \in \operatorname{ran} J_{h^{-1}(x_0)} \) and let \(\epsilon > 0 \). There exists an open neighborhood \(U_\epsilon \) of \(x_0 \) such that, if \(x \in U_\epsilon \), then \(f \in \operatorname{ran} J_{h^{-1}(x)} \) and
\[
\|(J_{h^{-1}(x_0)})^{-1}(f) - (J_{h^{-1}(x)})^{-1}(f)\| < \epsilon.
\]
As $f \in \text{ran} J_{h^{-1}(x_0)}$, there exists $e \in E$ with $J_{h^{-1}(x_0)}(e) = f$. Hence $(T \hat{e})(h^{-1}(x_0)) = J_{h^{-1}(x_0)}(e) = f$ and there exists an open neighborhood V_ϵ of $h^{-1}(x_0)$ such that $V_\epsilon \subset V$ and
\[
\|(T \hat{e})(y) - (T \hat{e})(h^{-1}(x_0))\| < \epsilon
\]
for all $y \in V_\epsilon$, that is,
\[
\|J_y(e) - f\| < \epsilon.
\]

On the other hand, as $f \in \text{ran} J_y$ for all $y \in V_\epsilon$, there exists $e'_y \in E$ such that $f = J_y(e'_y)$. Hence, if $y \in V_\epsilon$, then $\|J_y(e) - J_y(e'_y)\| < \epsilon$, that is,
\[
\|J_y(e - e'_y)\| < \epsilon,
\]
and, since J_y is an isometry, $\|e - e'_y\| < \epsilon$. Summarizing, if $x \in U_\epsilon := h(V_\epsilon)$, then
\[
\|(J_{h^{-1}(x_0)})^{-1}(f) - (J_{h^{-1}(x)})^{-1}(f)\| < \epsilon
\]
and the proof of the claim is done.

Next, define the function $f : X \rightarrow E$ by
\[
f(x) := (J_{h^{-1}(x)})^{-1}(g(h^{-1}(x)))
\]
for all $x \in X$. Hence, if we prove that f is continuous, then for $y = h^{-1}(x)$, we have
\[
(T f)(y) = J_y(f(y)) = J_y((J_y)^{-1}(g(y))) = g(y).
\]
Thus, it only remains to check the continuity of f at x_0. To this end, fix any $\epsilon > 0$. Since g is continuous, there exists an open neighborhood W of $h^{-1}(x_0)$ in Y such that, if $y \in W$, then
\[
\|g(y) - g(h^{-1}(x_0))\| < \frac{\epsilon}{2}.
\]
Let us define $U := h(W) \cap U_{\epsilon/2}$, where $U_{\epsilon/2}$ is given by the claim above for $f := g(h^{-1}(x_0))$. Then, by definition, if $x \in U$,
\[
\|f(x_0) - f(x)\| = \|\left((J_{h^{-1}(x_0)})^{-1}(g(h^{-1}(x_0))) \right) - \left((J_{h^{-1}(x)})^{-1}(g(h^{-1}(x))) \right) \| \\
\leq \| (J_{h^{-1}(x_0)})^{-1}(f) - (J_{h^{-1}(x)})^{-1}(f) \| \\
+ \| (J_{h^{-1}(x)})^{-1}(f) - (J_{h^{-1}(x)})^{-1}(g(h^{-1}(x))) \| \\
< \frac{\epsilon}{2} + \| (J_{h^{-1}(x)})^{-1}(f - g(h^{-1}(x))) \| \\
= \frac{\epsilon}{2} + \| f - g(h^{-1}(x)) \| \\
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,
\]

16
and the continuity of f is proved. \hfill \square

We can now prove the main result in this section.

\textit{Proof of Theorem 2.2.} Taking into account the previous lemmas, it only remains to check that $\sum_{i=1}^{k} \text{codim} (\text{ran } J_{y_i}) = n_0$, where $Y_N = \{y_1, \ldots, y_k\}$ is the subset introduced in Lemma 4.2.

Notice first that, due to the representation of T,

$$\text{codim} (\text{ran } J_{y_i}) \leq \text{codim}(\text{ran } T)$$

for each i. Then there exist k sets formed by linearly independent vectors

$$F_1 := \{f(1,1), \ldots, f(1,n_1)\},$$
$$F_2 := \{f(2,1), \ldots, f(2,n_2)\},$$
$$\vdots$$
$$F_k := \{f(k,1), \ldots, f(k,n_k)\}$$

such that

$$\text{ran } J_{y_i} + \text{span } F_i = \text{F}$$

and

$$\text{ran } J_{y_i} \cap \text{span } F_i = \{0\}$$

(1)

for each $i \in \{1, 2, \ldots, k\}$.

Contrary to what we claim, suppose first that

$$\sum_{i=1}^{k} n_i = \sum_{i=1}^{k} \text{codim} (\text{ran } J_{y_i}) > n_0.$$ Let us consider, for each $i \in \{1, 2, \ldots, k\}$, an open neighborhood V_i of y_i such that $V_i \cap V_j = \emptyset$ if $i \neq j$. Let $g_i \in C(Y)$ be such that $c(g_i) \subset V_i$ and $g_i(y_i) = 1$. Define also, for each $i \in \{1, 2, \ldots, k\}$ and each $j \in \{1, 2, \ldots, n_i\}$, a function $g(i, j) := g_i f(i, j)$. Hence we have $\sum_{i=1}^{k} n_i$ linearly independent functions in $C(Y, F)$, so there exists a linear combination

$$g_0 := \sum_{i,j} \alpha(i, j) g(i, j)$$
in the range of T, with some $\alpha(i_0, j_0) \neq 0$. Let $f \in C(X, E)$ satisfy $Tf = g_0$. Then

$$0 \neq \sum_{j=1}^{n_{i_0}} \alpha(i_0, j)f(i_0, j) = g_0(y_{i_0}) = (Tf)(y_{i_0}) = J_{y_{i_0}}(f(h(y_{i_0}))).$$

We deduce that $\text{ran } J_{y_{i_0}} \cap \text{span } F_{i_0} \neq \{0\}$, which contradicts (1) above. Hence $\sum_{n=1}^{k} \text{codim (ran } J_{y_{n}}) \leq n_0$.

Suppose now that $\sum_{n=1}^{k} \text{codim (ran } J_{y_{n}}) < n_0$. We shall check that, given n_0 linearly independent functions g_1, \ldots, g_{n_0} in $C(Y, F)$, there exists a nonzero linear combination in the range of T. This fact implies that the codimension of the range of T is strictly less than n_0, which is impossible.

Let us define the linear mappings

$$\lambda : K^{n_0} \longrightarrow \text{span } \{g_1, \ldots, g_{n_0}\}$$

by $\lambda(\gamma_1, \ldots, \gamma_{n_0}) := \sum_{j=1}^{n_0} \gamma_j g_j$ for all $(\gamma_1, \ldots, \gamma_{n_0}) \in K^{n_0}$. Next, for $i \in \{1, 2, \ldots, k\}$, consider

$$\mu_i : C(Y, F) \longrightarrow F/ \text{ran } J_{y_i}$$

where $\mu_i(g) := g(y_i) + \text{ran } J_{y_i}$ for all $g \in C(Y, F)$, and finally let

$$\mu : C(Y, F) \longrightarrow (F/ \text{ran } J_{y_1}) \times \cdots \times (F/ \text{ran } J_{y_k}),$$

where $\mu(g) := (\mu_1(g), \ldots, \mu_k(g))$ for all g. As a consequence, $\mu \circ \lambda$ turns out to be a linear mapping from a n_0-dimensional space to a space whose dimension is $\sum_{i=1}^{k} n_i < n_0$. It is apparent that $\mu \circ \lambda$ is not injective. Thus there exists $(\gamma_1, \ldots, \gamma_{n_0}) \in K^{n_0} \setminus \{(0, \ldots, 0)\}$ such that $(\mu \circ \lambda)(\gamma_1, \ldots, \gamma_{n_0}) = 0$. This means that $(\mu_i \circ \lambda)(\gamma_1, \ldots, \gamma_{n_0}) = 0 + \text{ran } J_{y_i}$ for each $i \in \{1, \ldots, k\}$, which is to say that $\sum_{j=1}^{n_0} \gamma_j g_j(y_i) \in \text{ran } J_{y_i}$ for all $i \in \{1, \ldots, k\}$. Taking into account the definition of Y_N, we see by Proposition 4.1 that $\sum_{j=1}^{n_0} \gamma_j g_j \in \text{ran } T$, as was to be proved.

Contrary to what could be expected in principle, the points of Y_N need not be isolated, as the following example shows.

Example 4.1 Let $X = Y := \{1/n : n \in \mathbb{N}\} \cup \{0\}$ and let $h : Y \longrightarrow X$ be the identity map. Given $f \in C(X, \ell^2)$, we define

$$(Tf) \left(\frac{1}{n} \right) := (\lambda_n^n, \lambda_1^n, \lambda_2^n, \ldots, \lambda_{n-1}^n, \lambda_{n+1}^n, \ldots),$$

\[18\]
where $f(1/n) := (\lambda_1^n, \lambda_2^n, \ldots, \lambda_{n-1}^n, \lambda_n^n, \lambda_{n+1}^n, \ldots)$. Also, if
\[
f(0) = (\lambda_1^0, \lambda_2^0, \ldots, \lambda_{n-1}^0, \lambda_n^0, \lambda_{n+1}^0, \ldots),
\]
then define
\[
(Tf)(0) := (0, \lambda_1^0, \lambda_2^0, \ldots, \lambda_{n-1}^0, \lambda_n^0, \lambda_{n+1}^0, \ldots),
\]
so that Tf belongs to $C(Y, \ell^2)$.

It is clear that T is a linear isometry where
\[
J_n : \ell^2 \to \ell^2 \quad \text{turns out to be}
\]
\[
J_n(\lambda_1, \lambda_2, \ldots, \lambda_{n-1}, \lambda_n, \lambda_{n+1}, \ldots) = (\lambda_n, \lambda_1, \lambda_2, \ldots, \lambda_{n-1}, \lambda_{n+1}, \ldots).
\]
On the other hand $J_0(e_n) = e_{n+1}$ for all $n \in \mathbb{N}$, and J_0 is a codimension 1 linear isometry on ℓ^2. Consequently T is a codimension 1 linear isometry, where the constant function \hat{e}_1 does not belong to the range of T. In this case, $Y_N = \{0\} \subseteq Y$, which is not isolated.

5 The finite-dimensional case.

From now on, we shall assume that $m := \dim F < \infty$.

Lemma 5.1 Suppose that $x \in X$ and $G_x = \{y_1, \ldots, y_{n_x}\}$. Then the mapping $Q_x : E \to F^{n_x}$, defined by
\[
Q_x(e) := ((Te)(y_1), \ldots, (Te)(y_{n_x}))
\]
for all $e \in E$, is a linear isometry if F^{n_x} is endowed with the sup norm
\[
\|f_1, \ldots, f_{n_x}\|_{\infty} = \max_{1 \leq i \leq n_x} \|f_i\|.
\]

Proof. Fix $e \in E$ with $\|e\| = 1$. Since T is an isometry, $\|Q_x(e)\| \leq 1$, so we must see that there exists $i \in \{1, \ldots, n_x\}$ with $\|J_{y_i}(e)\| = 1$. Obviously, if some y_i belongs to Y_{10}, then J_{y_i} is an isometry and we are done.

Consequently, we suppose that $G_x \cap Y_{10} = \emptyset$. This implies that $x \notin \overline{h}(Y_{10})$ and, since Y_{10} is compact, x is isolated in X. Hence the characteristic function $f := \chi_{\{x\}}e$ is continuous. As $f \equiv 0$ on $X \setminus \{x\}$, it is clear that $Tf \equiv 0$ on $\overline{h}^{-1}(X) \setminus \overline{h}^{-1}(x)$, which is to say that there must exist $y \in G_x \cup Y_2$ such that $\|(Tf)(y)\| = \|Tf\|_\infty = 1$. If we suppose that $y \in Y_2$, then there exists $f' \in C(X, E)$ with $f'(x) = 0$ and $(Tf')(y) \neq 0$. Without loss of generality, we shall assume that $\|f'\|_\infty = 1$. Hence $\|f + f'\|_\infty = 1 = \|f - f'\|_\infty$. However, as F is strictly convex, we have $\|(Tf)(y) + (Tf')(y)\| > 1$ or $\|(Tf)(y) - (Tf')(y)\| > 1$, which contradicts the isometric property of T. 19
As a consequence, Tf attains its maximum in G_x, which is to say that there exists $i \in \{1, \ldots, n_x\}$ with $\|J_{y_i}(e)\| = \|(Tf)(y_i)\| = 1$, as we wanted to see.

□

Next we deduce the relationship between the sets A_0 and A_2 introduced in Section 2.

Corollary 5.1 A_0 is contained in A_2.

Proof. Let $x_0 \in A_0$ and $y_0 \in F_{x_0}$ with J_{y_0} not a surjective isometry, which, in this finite-dimensional case, means that it is not an isometry. If $x_0 \notin A_2$, then $G_{x_0} = F_{x_0} = \{y_0\}$, and Lemma 5.1 easily leads to a contradiction. □

Proposition 5.1 Let Y be infinite. Suppose that $g \in C(Y, F)$ satisfies $g(\overline{h}^{-1}(A_2)) \equiv 0$. Then there exists a unique $f \in C(X, E)$ such that $Tf \equiv g$ on Y_1.

Proof. Define the function $f \in C(X, E)$ as follows:

- $f(x) := 0$ for $x \in A_2$.
- $f(x) := (J_{\overline{h}^{-1}(x)})^{-1}(g(\overline{h}^{-1}(x)))$ if $x \notin A_2$.

We first check that f is well-defined outside A_2, that is, $J_{\overline{h}^{-1}(x)}$ is a surjective isometry. Let $x \notin A_2$. Then $\overline{h}^{-1}(x) = h^{-1}(x)$ because $G_x = F_x$. Also, by Corollary 5.1, $x \notin A_0$, so $J_{\overline{h}^{-1}(x)} : E \to F$ is a surjective isometry.

Next we study the continuity of f. Let $x_0 \in X \setminus A_2$ and $\epsilon > 0$. We consider an open neighborhood V_1 of $h^{-1}(x_0)$ in Y such that, for all $y \in V_1$,

$$\|g(y) - g(h^{-1}(x_0))\| < \frac{\epsilon}{2}.$$

With no loss of generality, we can assume that $V_1 \subset Y_{10}$ because $h^{-1}(x_0) \in Y_{10} \setminus \overline{h}^{-1}(A_2)$ and this set is open being Y_{10} clopen by Lemma 3.7. Also, since $\overline{h}^{-1}(A_2)$ is finite, V_1 can be taken such that $\text{cl}(V_1) \cap \overline{h}^{-1}(A_2) = \emptyset$.

We can rewrite the above inequality as

$$\|J_y(f(h(y))) - J_{\overline{h}^{-1}(x_0)}(f(x_0))\| < \frac{\epsilon}{2}.$$

20
for all \(y \in V_1 \).

On the other hand, since \(Y_{10} \subset Y_0 \) is clopen and \(J : Y_0 \rightarrow L(E,F) \) is continuous with respect to the strong operator topology, we can take an open neighborhood \(V_2 \) of \(h^{-1}(x_0) \) with \(V_2 \subset Y_{10} \) such that

\[
\| J_y(f(x_0)) - J_{h^{-1}(x_0)}(f(x_0)) \| < \frac{\epsilon}{2}
\]

for all \(y \in V_2 \). We thus deduce that if \(y \in V_1 \cap V_2 \), then

\[
\| J_y(f(h(y))) - J_y(f(x_0)) \| < \epsilon
\]

that is,

\[
\| J_y[f(h(y)) - f(x_0)] \| < \epsilon.
\]

But as \(y \in Y_{10} \), \(J_y \) is an isometry, and consequently,

\[
\| f(h(y)) - f(x_0) \| < \epsilon
\]

(2)

for all \(y \in V_1 \cap V_2 \). Hence, in order to obtain the continuity of \(f \) at \(x_0 \in X \setminus A_2 \), it suffices to notice that sets of the form \(h(V_1 \cap V_2) \) are open neighborhoods of \(x_0 \).

Let us now study the continuity of \(f \) on \(A_2 \). To this end, fix \(x_0 \in A_2 \). Since \(A_2 \) is a finite set, there exists an open neighborhood \(U \) of \(x_0 \) such that \(U \cap A_2 = \{x_0\} \).

Suppose that \(f \) is not continuous at \(x_0 \). Then there exist \(\epsilon > 0 \) and a net \((x_\alpha) \) in \(U \) which converges to \(x_0 \) such that \(\| f(x_\alpha) \| \geq \epsilon \) for all \(\alpha \). Since each element of the net \(x_\alpha \) belongs to \(X \setminus A_2 \), we infer that \(h^{-1}(x_\alpha) \) is a singleton in \(Y_{10} \). Furthermore, as \(Y_{10} \) is compact, there exists a subnet \(h^{-1}(x_\beta) \) convergent to a certain \(y_0 \in Y_{10} \). Since \(h \) is continuous, we deduce that \((x_\beta) \) converges to \(h(y_0) \) and, as a consequence, that \(h(y_0) = x_0 \). This fact yields \(y_0 \in h^{-1}(A_2) \).

By hypothesis, \(g(y_0) = 0 \). However, each \(J_{h^{-1}(x_\beta)} \) is an isometry and, by the definition of \(f \),

\[
g(h^{-1}(x_\beta)) = J_{h^{-1}(x_\beta)}(f(x_\beta)).
\]

Hence \(\| g(h^{-1}(x_\beta)) \| \geq \epsilon \) for all \(\beta \). This implies that \(g \) is not continuous at \(y_0 \), a contradiction, which completes the proof of the continuity of \(f \). The rest of the proof is apparent. \(\square \)
Proof of Theorem 2.3. Put $A_2 = \{x_1, x_2, \ldots, x_k\}$ and, for each $x_i \in A_2$ (see Lemmas 3.3 and 3.4), let

$$G_{x_i} = \{y(x_i, 1), \ldots, y(x_i, n_i)\}. \tag{10}$$

By Corollary 3.1, for each $i \in \{1, 2, \ldots, k\}$ and each $j \in \{1, 2, \ldots, n_i\}$ we can consider an open neighborhood $U(i, j)$ of $y(x_i, j)$ such that $U(i, j) \subset Y_1$ and $U(i, j) \cap U(i', j') = \emptyset$ if $(i, j) \neq (i', j')$. For each pair (i, j) we choose a function $g(i, j) \in C(Y)$ such that $g(i, j)(y(x_i, j)) = 1 = \|g(i, j)\|_\infty$ and $c(g(i, j)) \subset U(i, j)$.

Note that, since Y is infinite, the set $Y_{10} \setminus \overline{h^{-1}(A_0)}$ is nonempty, which easily leads to $\dim E = \dim F$. Now, by Lemma 5.1, each mapping $Q_{x_i} : E \longrightarrow F^m$ is an isometry, so $m := \dim F = \dim Q_{x_i}(E)$. Hence we can find $m(n_i - 1)$ linearly independent vectors in F^m of the form

$$\mathcal{Z}(i, l) := (f(i, l, 1), f(i, l, 2), \ldots, f(i, l, n_i)) \tag{3}$$

for $l = 1, \ldots, m(n_i - 1)$ such that

$$F^m = \operatorname{ran} Q_{x_i} \bigoplus \operatorname{span}\{\mathcal{Z}(i, 1), \ldots, \mathcal{Z}(i, m(n_i - 1))\}. \tag{3}$$

Next we define, for each $i \in \{1, 2, \ldots, k\}$, $m(n_i - 1)$ functions in $C(Y, F)$ related to $\mathcal{Z}(i, j)$ and $g(i, j)$ of the form

$$\mathcal{N}_{[i, l]} := \sum_{j=1}^{n_i} g(i, j)f(i, l, j) \tag{4}$$

for $l = 1, \ldots, m(n_i - 1)$.

Note that, for $i \in \{1, 2, \ldots, k\}$ and each $l \in \{1, 2, \ldots, m(n_i - 1)\}$, we have $\mathcal{N}_{[i, l]}(Y_2 \cup Y_3) \equiv 0$, and if $i' \neq i$, $i' \in \{1, 2, \ldots, k\}$, then $\mathcal{N}_{[i, l]}(G_{x_i}) \equiv 0$, and, for any $j \in \{1, 2, \ldots, n_i\}$,

$$\mathcal{N}_{[i, l]}(y(x_i, j)) = f(i, l, j). \tag{4}$$

Now assume that $Y_2 := \{z_1, \ldots, z_t\}$ and $Y_3 := \{w_1, \ldots, w_s\}$ (see Lemmas 3.5, 3.6 and 3.7). For every $i \in \{1, 2, \ldots, t\}$ and every $l \in \{1, 2, \ldots, m\}$ we can consider $\mathcal{X}_{[i, l]} := \chi(z_i) b_l \in C(Y, F)$ where $B := \{b_1, b_2, \ldots, b_m\}$ is a basis of F. In like manner, we can define, for every $i \in \{1, 2, \ldots, s\}$ and every $l \in \{1, 2, \ldots, m\}$, $\mathcal{Y}_{[i, l]} := \chi(w_i) b_l \in C(Y, F)$.

We now claim that the functions we have just introduced are linearly independent. To this end, suppose that

$$\sum_{i, l} \alpha(i, l)\mathcal{N}_{[i, l]} + \sum_{i, l} \beta(i, l)\mathcal{X}_{[i, l]} + \sum_{i, l} \gamma(i, l)\mathcal{Y}_{[i, l]} \equiv 0 \in C(Y, F).$$

22
If we evaluate this sum at the point $z_i \in Y_2$, then we get
\[
\sum_{l=1}^{m} \beta(i, l) b_l = 0 \in F.
\]
As $\{b_1, \ldots, b_m\}$ is a basis of F, we infer that each $\beta(i, l) = 0$. Similarly, by evaluating the above sum at each point of Y_3, we conclude that $\gamma(i, l) = 0$ for each $i \in \{1, 2, \ldots, s\}$ and $l \in \{1, 2, \ldots, m\}$.

On G_x, the above sum turns out to be
\[
m(n_i - 1) \sum_{l=1}^{m} \alpha(i, l) \mathcal{R}_{[i,l]} \equiv 0 \in C(Y, F).
\]
Taking into account equality (4), this means that for each $y(x_i, j)$, $1 \leq j \leq n_i$,
\[
\sum_{l=1}^{m(n_i - 1)} \alpha(i, l) f(i, l, j) \equiv 0, \tag{5}
\]
so $\sum_{l=1}^{m(n_i - 1)} \alpha(i, l) Y_{[i,l]} = 0 \in F^{m_i}$. As a consequence, all the $\alpha(i, l)$ are zero because all vectors $Y_{[i,l]}$ are linearly independent.

Claim 5.1 The function
\[
g := \sum_{i,l} \alpha(i, l) \mathcal{R}_{[i,l]} + \sum_{i,l} \beta(i, l) \Xi_{[i,l]} + \sum_{i,l} \gamma(i, l) \Upsilon_{[i,l]}
\]
does not belong to the range of T, except when $g \equiv 0$.

Suppose that there exists $f \in C(X, E)$ with $Tf = g$. This yields, by the definition of Y_3, that each $\gamma(i, l)$ is zero. We shall check that all $\alpha(i, l)$ are zero. Fix $i \in \{1, \ldots, k\}$. Given $j \in \{1, 2, \ldots, n_i\}$, we have
\[
g(y(x_i, j)) = J_{y(x_i,j)}(f(x_i)).
\]
On the other hand, by equality (4),
\[
g(y(x_i, j)) = \sum_{l=1}^{m(n_i - 1)} \alpha(i, l) \mathcal{R}_{[i,l]}(y(x_i, j))
\]
which implies that

\[Q_{x_i}(f(x_i)) = \sum_{l=1}^{m(n_i-1)} \alpha(i,l)\Im(i,l) \in F^{n_i}. \]

Since \(\text{ran} Q_{x_i} \cap \text{span}\{\Im(i,1), \ldots, \Im(i,m(n_i-1))\} = \{0\}, \)
we have \(Q_{x_i}(f(x_i)) = 0 \in F^{n_i}, \) and consequently \(\alpha(i,l) \) is zero for all \(l. \)
Summarizing, \(g \equiv 0 \) on \(Y_1, \) implying that \(g \equiv 0 \) on \(Y_2. \) This completes the proof of the claim.

Gathering the information obtained so far, we deduce that the vectors

\[\Re[i,l] + \text{ran} T, \Xi[i,l] + \text{ran} T, \Upsilon[i,l] + \text{ran} T, \]
are linearly independent in the space \(C(Y,F)/\text{ran} T. \) In order to finish the proof, it suffices to check that, given \(g \in C(Y,F), \) there exist scalars \(\alpha(i,j), \beta(i,j), \gamma(i,j) \) such that

\[g - \sum_{i,l} \alpha(i,l)\Re[i,l] + \sum_{i,l} \beta(i,l)\Xi[i,l] + \sum_{i,l} \gamma(i,l)\Upsilon[i,l] \]
belongs to the range of \(T. \)

For each \(i \in \{1,2,\ldots,k\} \) we consider the vector

\[N_i := (g(y(x_i,1)), g(y(x_i,2)), \ldots, g(y(x_i,n_i))) \in F^{n_i}. \]

Then, by equality (3), there exist \(e_i \in E \) and constants \(\alpha(i,1), \ldots, \alpha(i,m(n_i-1)) \) such that

\[N_i = Q_{x_i}(e_i) + \sum_{l=1}^{m(n_i-1)} \alpha(i,l)\Im(i,l). \]

Hence, if we fix \(j \in \{1,2,\ldots,n_i\}, \) then, by equality (4),

\[g(y(x_i,j)) = (T e_i)(y(x_i,j)) + \sum_{l=1}^{m(n_i-1)} \alpha(i,l)f(i,l,j) + \sum_{l=1}^{m(n_i-1)} \alpha(i,l)\Re[i,l](y(x_i,j)) \in F, \]

24
where \(f_i \in C(X, E) \) with \(f_i(x_i) = e_i \) and \(f_i(x_{i'}) = 0 \) for \(i \neq i' \). If we do so for each \(i \in \{1, 2, \ldots, k\} \) and each \(j \in \{1, 2, \ldots, n_i\} \), we obtain \(k \) functions \(f_i \in C(X, E) \) such that, for \(i_0 \in \{1, 2, \ldots, k\} \) and \(j_0 \in \{1, 2, \ldots, n_{i_0}\} \),

\[
g(y(x_{i_0}, j_0)) = \sum_{i=1}^{k} (Tf_i)(y(x_{i_0}, j_0)) + \sum_{i,l} \alpha(i, l)\mathcal{N}_{i,l}(y(x_{i_0}, j_0)).
\]

Therefore, the function

\[
g_0 := g - \sum_{i=1}^{k} Tf_i - \sum_{i,l} \alpha(i, l)\mathcal{N}_{i,l}
\]

vanishes on each \(y(x_i, j) \), which is to say, on \(\overline{h^{-1}(A_2)} \). By Proposition 5.1, there exists \(f_0 \in C(X, E) \) such that \(Tf_0 \equiv g_0 \) on \(Y_1 \). Hence there exist certain constants \(\beta(i, l) \) and \(\gamma(i, l) \) such that

\[
g_0 - Tf_0 - \sum_{i,l} \beta(i, l)\Xi_{i,l} - \sum_{i,l} \gamma(i, l)\Upsilon_{i,l} \equiv 0
\]

on \(Y_2 \cup Y_3 \) and, consequently, on \(Y \). That is,

\[
g - \sum_{i=1}^{k} Tf_i - Tf_0 - \sum_{i,l} \alpha(i, l)\mathcal{N}_{i,l} - \sum_{i,l} \beta(i, l)\Xi_{i,l} - \sum_{i,l} \gamma(i, l)\Upsilon_{i,l} \equiv 0
\]

on \(Y \). We now easily complete the proof of the theorem. \(\square \)

Acknowledgements. The authors wish to thank the referee for his/her remarks, which improved this paper.

References

Departamento de Matemáticas, Estadística y Computación, Facultad de Ciencias, Universidad de Cantabria, Avda. de los Castros s/n E-39071, Santander, Spain.

E-mail address: jesus.araujo@unican.es
Departamento de Matemáticas, Universitat Jaume I, Campus Riu Sec, E-12071, Castellón, Spain.

E-mail address: font@mat.uji.es