Abstract—Wireless Power Transmission (WPT) is an emerging technology that is gaining increased visibility in recent years. Efficient WPT circuits, systems and strategies can address a large group of applications spanning from battery-less systems, battery-free sensors, passive Radio Frequency Identification (RFID), Near Field Communications (NFC) and many others. WPT is a fundamental enabling technology of the Internet of Things (IoT) concept, as well as Machine-to-Machine (M2M) communications, since it minimizes the use of batteries and eliminates wired power connections. WPT technology brings together RF and DC circuit and system designers with different backgrounds on circuit design, novel materials and applications and regulatory issues, forming a cross disciplinary team in order to achieve an efficient transmission of power over the air interface. This paper aims to present WPT technology in an integrated way, addressing state-of-the-art and challenges, and to discuss future R&D perspectives summarizing recent activities in Europe.

Index Terms—Wireless Power Transmission, RFID, Internet of Things, Machine to machine communication, energy harvesting, power management.

I. INTRODUCTION

Wireless communications, battery-free sensors, passive RFID, passive wireless sensors, IoT and M2M are systems and concepts that benefit from the use of wireless power transmission (WPT) and energy harvesting solutions to remotely power up wireless devices.

While recent advances in smart phones and wireless utensils appear to be unlimited, the dependence of their operation on batteries remains a weakness, mainly because batteries have limited lifetime and require a fast charge time to achieve continuous operation. This is where the concept of WPT is useful, bringing together energy and wireless data transmission. This substitutes the traditional powering concept, where a cable or a battery is connected to the wireless device by the transmission of energy over the air in an efficient way to power-up the device.

WPT is, by definition, a process that occurs in any system where electrical energy is transmitted from a power source to a load without the connection of electrical conductors. This is not a new idea, attributed mainly to the work of Nikola Tesla in the late nineteenth century. Tesla also made a WPT demonstration, similar to the more recent one at the “World’s Columbian Exposition” in Chicago, where it was shown that WPT could be used to “light” incandescent lamps [1, 2].

The long distance coverage of WPT was also demonstrated in 1975 by William Brown [3], when he transmitted a microwave beam converted to DC power by a RF-DC converter at a distance of 1.6 km. Specifically, the concept of a rectenna has been initially proposed by William Brown, where the combination of an antenna with a rectifier (RF-DC converter)

Manuscript received October 1, 2013. The work of N.B. Carvalho and A. Boaventura was supported by the Portuguese Foundation for Science and Technology (FCT) under Project CREATION EXCL/EI-TEL/0067/2012 and Doctoral Scholarship SFRH/BD/80615/2011. The research of H. Rogier was supported by BELSPO through the IAP Phase VII BESTCOM project and by the Fund for Scientific Research-Flanders (FWO-V). The work of A. Georgiadis and A. Collado was supported by EU Marie Curie FPT-PEOPLE-2009-IAPP 251557 and the Spanish Ministry of Economy and Competitiveness project TEC 2012-39143. The work of J. A. García and M. N. Ruiz was supported by the Spanish Ministries MICINN and MINECO through the FEDER co-funded Project TEC2011-29126-C03-01 and Project CSD2008-00068. The work of J. Kracek and M. Mazanek was partially supported by the Czech Ministry of Education Youth and Sports under project OC09075 - Novel Emerging Wireless Systems.

N.B. Carvalho and A. Boaventura are with the Instituto de Telecomunicações, Departamento de Electrónica, Telecomunicações e Informática, Universidade de Aveiro, 3810-193 Aveiro, Portugal (e-mail: nbcarvalho@ua.pt).

J.Kracek, V.Pankrac and M. Mazanek are with the Department of Electromagnetic Field of the Faculty of Electrical Engineering of the Czech Technical University in Prague, Technicka 2, 16627 Prague, Czech Republic (e-mail: jan.kracek@fel.cvut.cz; pankrac@fel.cvut.cz; mazanekm@fel.cvut.cz).

A. Costanzo and D. Masotti are with DEI “Guglielmo Marconi”, University of Bologna, 40136, Bologna, Italy (e-mail: alessandra.costanzo@unican.it; diego.masotti@unican.it).

Paulo Mezzanotte is with the Department of Electronic and Information Engineering, University of Perugia, Perugia 06125, Italy (e-mail: paolo.mezzanotte@diei.unipg.it).

A. Georgiadis and A. Collado are with the Centre Tecnologic de Telecomunicacions de Catalunya (CTTC), Castelldefels, 08860 Spain (e-mail: ageorgiadis@cttc.es; acollado@cttc.es).

H. Rogier is with the Department of Information Technology (INTEC), IMEC/Ghent University, S. Pietersnieuwstraat 41, 9000 Ghent, Belgium (e-mail: Hendrik.Rogier@UGent.be).

M. Pinuela, D.C. Yates, P.D. Mitcheson and S. Lucyszyn, are with the Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K. (e-mail: m.pinuela09@imperial.ac.uk; david.yates@imperial.ac.uk; paul.mitcheson@imperial.ac.uk; s.lucyszyn@imperial.ac.uk).

J. A. García and M. N. Ruiz are with the Department of Communications Engineering, University of Cantabria, 39005 Santander, Spain (e-mail: joseangel.garcia@unican.es; mariadelasnieves.ruiz@unican.es).
made possible to efficiently convert RF energy to DC energy. In his experiment he achieved an efficiency of 84% [3].

Nevertheless, there are other methods of transmitting energy wirelessly. For example, the inductive power transfer (IPT) is gaining a lot of attention, primarily for short range charging of devices, avoiding the need of power cables; a well-known and commercially successful example is the induction powered toothbrush, or recent mobile phones being charged by inductive coils. This method achieves a range of a few millimeters to a meter, and its low efficiency for higher distance imposes certain constraints in terms of possible applications. However, IPT has evolved in the last twenty years into a $1 billion industry [4], with notable applications in factory automation, biomedical implants and instrumentation; pioneered by research works such as the ones by the Univ. of Auckland [4,5]. A group at Massachusetts Institute of Technology (MIT), recently demonstrated a new approach for transmitting energy over larger distances using resonant inductive coupling, providing 60 watts to a lamp placed 2 m from the transmitter, with an efficiency of 40% [6]. This experiment was further tested by Intel, achieving an efficiency of 75% at a distance of 60 cm [7].

These success stories define a new area of research, where the objective is to remove and eliminate all the power cables connected to the electronic utensils, but also to eliminate or at least reduce the charging needs of batteries in mobile devices. This technology is considered essential for the industry in several areas of expertise, including consumer electronics, automotive and industrial control process. Consequently, the energy sector is investing substantially in research and development for wireless energy transfer technologies. Recently the "Wireless Power Consortium" was created [8], with support from a large community of companies. The purpose of this consortium is to establish an international standard for creating wireless battery rechargeable stations, compatible with electronic products. Other consortia have also been created, with a notable example being the Wireless Power Alliance. Towards maximizing the autonomous operation of low power wireless sensors, significant research efforts are also devoted to energy harvesting technologies, which include ambient electromagnetic energy (EM) harvesting. The latter explores existing radiated EM waves from sources not intended for the purposes of the specific wireless sensor application under consideration. A good practical example of RF energy harvesting from a multitude of ambient sources has been recently reported by Imperial College London [9].

With the growth of portable applications, many companies, such as eCoupled, WiPower and Powermat [10-13], have developed solutions for the commercial market of wireless energy transfer. These initial developments drive the growth of commercial technological solutions, such as the ones able to charge electric vehicles without connecting to an outlet [14]. In terms of health related applications, wireless transmission of power will charge the battery of pacemakers, without the need for further surgery to replace them [14]. The growth of applications in home automation, with the need to place individual devices or disguised without any physical connection, such as surveillance cameras, will be a reality and an application for this type of power transmission. In academia, WPT has been investigated to power up RFID’s, or to create a space-based satellite system that sends microwave energy to earth (e.g. the Microwave-based Space Solar Power System (M-SSPS) mission, proposed by JAXA in Japan).

Recently, companies have begun to evaluate the feasibility of using near-field WPT (also known as inductive power transfer, IPT, or inductive-WPT) by using resonant, highly efficient inductive coupling, where transfer efficiencies can be up to 90%, to power up implantable sensors, mobile phones, home utensils, monitoring sensors in buildings, etc. The optimal operating frequency is still to be established, depending on the environment, specific application, available switching speed of the power amplifier transistors and required re-charging time. In the case of far-field wirelessly powering (also known as radiative–WPT), longer distances can be reached, but the achievable system efficiency still needs to be optimized. The problems researchers are facing include the size and weight of the transmitter and receiver coils, the amount of transmitted energy, the distance and directionality between the transmitter and receiver, the power electronics at high frequency, losses, efficiency, etc.

Finally, although WPT is possible, there is concern regarding the impact of electromagnetic field on the health of the users of the technology. In order to accelerate the adoption of WPT, it is absolutely necessary that it operates within a regulatory framework. In order to expedite the regulatory process, companies, universities, scientists and Original Equipment Manufacturers (OEMs) must work together to establish agreements, so as to incorporate a unified charging system for a wide range of products.

This paper presents the state-of-the-art in WPT technology, highlighting selected research activities across Europe. The number of European research groups with dedicated research activity in the field of WPT is large. In this paper, a characteristic sample of the works from a selected non-exhaustive set of research groups is presented, namely the University of Perugia and University of Bologna, in Italy, University of Aveiro in Portugal, University of Ghent in Belgium, Imperial College London, UK, Czech Technical University in Prague, Czech Republic and Centre Tecnologic de Telecomunicacions de Catalunya (CTTC) and University of Cantabria in Spain. These research groups have recently formed a research network, the European Cooperation in Science and Technology (COST) project IC1301 on Wireless Power Transmission for Sustainable Electronics [15], with an aim to create a reference framework among research and regulatory bodies in this challenging and exciting field worldwide. The paper is organized in terms of dynamic research areas, such as flexible electronics and wearable systems, inductive power transmission, DC-DC converters, computer-aided design (CAD) and signal optimization, energy harvesting systems and RFID.

II. FLEXIBLE SUBSTRATE MATERIALS AND WEARABLE ANTENNAS FOR WPT

A low-cost, contactless assembly method for flexible substrate antennas and RFID chips has been developed at the
University of Perugia [16]. Such methods exploit a magnetic coupling mechanism, thus not requiring ohmic contacts between the chip and the antenna itself. The coupling is obtained by a planar transformer; the primary and secondary windings of which are fabricated on the antenna substrate and chip, respectively. The proposed assembly method leads to a solution that requires only a placing and gluing process. In addition, such a transformer can tolerate misalignments.

The proposed approach has been validated with several practical applications; in particular in [16] a bow-tie UHF antenna on paper substrate was fabricated and its coupling to a hypothetical RFID chip was studied. The antenna was modeled by using a Thevenin equivalent circuit, whereas the chip is described by a resistor R_c (mainly the rectifier input impedance). To maximize the power transfer between the antenna and the chip, a suitable shunt capacitor (C_m) is placed at the terminals of the secondary winding. An overall power transfer ratio (P_{out}/P_{in}) of -1.5 dB was achieved at the 868 MHz design frequency with $R_c = 350 \, \Omega$ and $C_m = 1.9 \, \text{pF}$.

Another example is reported in [17] where a bow-tie UHF antenna with the primary winding on a flexible substrate (Pyralux) was coupled to the secondary winding fabricated on a PCB substrate (Rogers RO4003). Fig. 1a shows the photo of the fabricated structure and Fig. 1b reports the reflection coefficient measured at the secondary winding terminals, with respect to the design optimum impedance. The same circuits can be replicated on paper substrates exploiting conductive adhesive tapes, as demonstrated in [18] [19] [20], where devices of comparable complexity are presented.

An example of concurrent technologies for the Internet of Things (IoT) is given in [21], where a shoe mounted sensor for monitoring the human health is fabricated and measured. The sensor module consists of a novel shoe sole that serves the double role of a medical-grade temperature probe and a renewable energy scavenger. The temperature probe is used to monitor the condition of the human body. The scavenger transforms the human motion to usable electrical energy through a piezoelectric transducer (PZT). This way it complements a Li-ion rechargeable battery technology forming a hybrid power system approach. Additionally, a near-field reader is also placed in the shoe for purposes of localization. All collected data is pre-processed by a microcontroller unit (MCU) and transmitted through two transceivers at 900 MHz or 2.4 GHz, or both, through a dual-band antenna.

At Ghent University, flexible and wearable systems as enabling technologies for wireless power transfer have been studied in a body-centric context. In the past decade, the group has been in the forefront, in terms of research on experimental Smart Fabric Interactive Textile (SFIT) systems, a domain that has evolved tremendously during that time. Yet, at this moment, not many SFIT systems are used by industry, and market penetration is not in line with the research investment made in these systems. Current research efforts focus on removing the remaining impediments to allow SFIT systems to come to market.

One of the problems that must still be solved is that commercial SFIT systems should exhibit large autonomy and low maintenance cost. Therefore, efficient wireless power transfer is of primary importance. Existing wearable systems already rely on inductive near-field power transfer, making, for example, use of an embroidered coil integrated into the garment [22]. Near-field systems clearly suffer from limited operating ranges, requiring the wearer to position the system at a well-defined location and in a well-defined orientation for recharging. Far-field wireless power transfer may overcome this problem, provided the energy efficiency of these systems is improved.

![Fig. 1. a) Prototypes of the antenna-transformer: flexible substrate with dipole antenna and primary winding, and Rogers substrate with UFL connector and secondary winding separated by bi-adhesive tape. b) measured reflection coefficient $|S_{11}|$ plotted with respect to 32.4-j80.5 Ohm (optimal load impedance transformer); S_{11} magnitude is below -10 dB in the frequency band 868-869.2 MHz.](image)

Another important recent evolution, as an enabling technology for WPT, was the development of electronic microwave systems on low-cost eco-friendly organic substrates, such as paper [23-26]; plastics that include liquid crystal polymers (LCPs) [27], polyethylene terephthalate (PET) [28] and polyimide [29]; textile fabrics [30] and foam materials [31]. Combining these substrates with low-cost screen [32] and inkjet printing [33] of conductive inks, embroidering using conductive yarns [34] or patterning of off-the-shelf electro-textiles [35] to produce interconnects, ground planes and antennas, leverages the cost-effective fabrication of conformal large-scale energy harvesting surfaces that allow invisible and unobtrusive integration into their environment, which may be a
piece of clothing, a wall, the surface of a vehicle or aircraft. Moreover, the emergence of novel (semi-)conducting materials, such as carbon nanotubes (CNTs) [36], graphene [37] and pentacene [38] opens up some new perspectives to further improve the performance and/or the functionality of these systems. In addition, the judicious combination of hybrid fabrication techniques with advanced full-wave/circuit co-design [39, 40] results in highly efficient active antenna systems, where short RF interconnects allow optimal exploitation of the available energy. An example of an active wearable antenna designed based on this formalism is shown in Fig. 2.

In a body-centric context, specific challenges as well as opportunities arise. The direct proximity of the human body leads to a very complex propagation channel [43], in which correlated body shadowing introduces an additional level of received power fluctuations, on top of the multipath fading due to the environment. Yet, in a wireless off-body communication setup, it has been well established that the large area of a garment may be exploited to integrate multiple textile antennas and to implement MIMO schemes [44, 45], providing very reliable off-body communication links. In a similar fashion, multiple antennas cleverly distributed over the body may capture transferred power, leveling out fluctuations and providing a more continuous energy source. In addition, a garment provides enough space to deploy antennas tuned at different frequencies, paving the way for multiband or wideband energy transfer. Moreover, wearable antenna arrays [46] may efficiently harvest from concentrated power beams. Yet, an important issue to bear in mind at all times is the wearer's safety given the specific absorption rate (SAR) exposure limits. Therefore, we advocate a distributed joint communication, harvesting and exposure monitoring system, by extending the topology proposed in [47].

III. INDUCTIVE POWER TRANSFER

Near-field WPT uses a principle of inductive coupling [48, 49]. A principle of capacitive coupling is utilized less often [50]. In the case of inductive power transfer (IPT), transmission is mediated between coupling elements represented by different structures of inductive coils on the side of a source and an appliance. The harmonic signal from a few kilohertz to a few megahertz is used for transmission between inductive coils.

At Imperial College London, recent studies on high efficiency IPT systems have been reported [51]. Fig. 3 shows the typical architecture for an IPT system, with its transmitting (TX) coil separated by a distance D from its receiving (RX) coil. The maximum output power and efficiency can be improved by integrating the Power Amplifier’s (PA’s) impedance matching into the driver. The Class-E amplifier was adopted, however, working at 100 W and switching at ~6 MHz is non-trivial; made possible with suitable power RF MOSFETs and high Q capacitors. Furthermore, to achieve a good efficiency, a semi-resonant mode to match to the coils’ impedance characteristics was found to be the most suitable solution [51].

![Fig. 3. IPT systems architecture [51].](image-url)

Fig. 4(a) shows the circuit of a semi-resonant Class-E amplifier for the transmitter’s loaded resonant tank (represented by the TX coil’s self-inductance L_p, series resistance R_p, and effective
receiver resistance R_{seq}). Increasing both driver and link efficiencies is achieved by tuning the primary resonant tank to a higher resonant frequency, ω_{res}, than the receiver’s resonant tank driven resonant frequency, ω_{res}, at which the MOSFET gate driver switches at an operating frequency ω_{d}, i.e. $\omega_{\text{res}} > \omega_{\text{res}} = \omega_{\text{d}}$.

Fig. 4. (a) Semiresonant Class-E topology, with $\omega_{\text{d}} < \omega_{\text{res}}$, and (b) Simulated C_{par} values against $\omega_{\text{res}}/\omega_{\text{TX}}$ for Class-E MOSFET selection with a drain-source voltage of 230 V [51].

For a coil separation of arbitrary distance $D = 30$ cm and perfect coil alignment, PSpice simulations were performed to validate the semi-resonant mode of operation. The IXYSRF IXZ421DF12N100 module was employed, because it includes the best available MOSFET for high power handling and with nanosecond switching and has a relatively low output capacitance C_{oss} at a drain-source voltage $V_{\text{DS}} = 230$ V (required for 100-W operation).

In practice, C_{oss} is effectively absorbed by the parasitic capacitance C_{par} and is a limiting factor for selecting the maximum value of $\omega_{\text{d}}/\omega_{\text{res}} = 0.82$, required for high efficiencies, as shown in Fig. 4(b). At this sweet spot, for the desired power level, V_{DS} will increase and I_{DS} will decrease, resulting in a greater Class-E efficiency.

In summary, realizing low-cost high Q coils and implementing a complete design and operational analysis of a semi-resonant Class-E driver for this IPT system was investigated [51]. For a load power of 95 W, an overall dc-to-load efficiency of 77% were demonstrated at 6 MHz, in a perfectly aligned scenario for $D = 30$ cm, having a coil-to-coil link efficiency of 95%.

Other challenging problems of IPT consist of the optimization of the transmission efficiency in the sense of reducing heating losses in the induction coils and ensuring relatively homogeneous and strong coupling, even if the appliance is moved. An investigation of structures of the induction coils and their electromagnetic field, with respect to these goals, is necessary. In addition, understanding of the heating losses of different geometries is important. The structures of induction coils that possess relatively homogeneous and strong coupling for arbitrary placement and orientation of an appliance have to be explored and strategies for their excitation have to be found. These structures can be then optimized for different scenarios, like close-range defined coupling or random free space coupling. The circuit model given by extraction of circuit parameters based on electromagnetic field analysis can be usually used for optimization. The important goal is to generalize the results and create recommendations for design.

The coupling elements represented by induction coils can be created by different structures according to their purpose [52]. For close range transmission, the induction coils are usually flat and can be organized in arrays on the side of the source, to support movement of an appliance along this surface created by source’s coils [48]. Such systems are suitable for powering small appliances, such as smart phones and other mobile utensils. Another system is intended for the powering of low power appliances, such as sensors placed in free space or any medium like concrete or human tissue [49]. In this case, the transmitting coils are considerably bigger than the receiving coils and surround the given space, where a powered appliance is located. The purpose is to ensure relatively homogeneous transmission for arbitrary placement and orientation of the appliance. Researchers at the Czech Technical University in Prague are working on optimization of the power balance of IPT systems with respect to structures of induction coils. Their study shows the relation between transmission efficiency and amount of transmitted power for resonance IPT systems [53]. Further, they are developing effective algorithms for the description of the magnetic fields for the induction coils [54] and extraction of their integral parameters, like self and mutual inductance [55].

IV. MULTI-DOMAIN CAD APPROACH FOR THE DESIGN OF RF ENERGY HARVESTING SYSTEMS

At the University of Bologna, the focus has been on the use of a multi-domain CAD approach for the design of RF energy harvesting systems. The optimum design of an RF energy harvesting system is a nonlinear optimization problem and is a delicate task due to the strong interactions between the different subsystem parts. This is mainly due to the influence of the frequency-dependent antenna impedance on the nonlinear operation of the rectifier; this is particularly true when multiband antennas are required and multilayered compact layouts are used. Furthermore, a wide range of received power levels need be accounted for, which usually requires the design of different rectenna loading conditions. For these purposes, a multi-domain CAD approach, integrating EM, nonlinear simulation and baseband design, is used to simultaneously optimize antenna/rectifier matching network together with the
load/storage circuit. At RF, the subsystem, consisting of the receiving antenna loaded by the rectifier and the antenna-rectifier inter-stage network is designed in a steady-state nonlinear regime, by means of the concurrent use of nonlinear/EM CAD tools in optimum loading conditions. At baseband the optimum loading conditions can be dynamically tracked by the transient design of a DC-DC converter with the rectenna circuit equivalent, derived in the previous step, representing the converter load. In this way the maximum overall system efficiency is dynamically guaranteed in real time [56]. Thus, integration of RF nonlinear Harmonic Balance (HB) and Time Domain (TD) design techniques can be successfully implemented.

In the design of the entire rectenna, to augment the effectiveness of the CAD procedure, it is important to include the channel effects and the actual antenna received power. The only way to account for these aspects is to resort to rigorous EM theory, by the application of reciprocity theorem [57]. This approach can be described by referring to a general RF harvesting scenario, where a number of (un)known RF sources may exist and are described in terms of their respective radiated fields incident on the rectenna. Frequency, direction of arrival, and polarization of each incident field may be arbitrary. Assuming that the RF sources are located in the far-field region of the harvester, a k-th incident field at the harvester location may be described as a uniform plane wave and thus by a constant complex vector \(\mathbf{E}_\text{inc}(\omega_k) \). If the source location and polarization are known, \(\mathbf{E}_i(\omega_k) \) is measured at the harvester position, as is the case of on-demand wirelessly powering scenarios. If unknown ambient sources are exploited, any possible amplitude, direction of arrival and polarization of \(\mathbf{E}_d(\omega_k) \) can be adopted to statistically predict the rectenna operating conditions.

Let \(\mathbf{E}_\text{r}(\mathbf{r};\omega_k) \) be the far-field vector radiated by the harvester antenna operating in the transmitting mode, when powered by a voltage source of known amplitude \(U \) and internal resistance \(R_0 \).

\[
\mathbf{E}_\text{r}(\mathbf{r};\omega_k) = \mathbf{E}_{\text{inc}}(\omega_k) + \mathbf{E}_{\text{d}}(\mathbf{r};\omega_k) \tag{1}
\]

Here, \(\mathbf{r} \) is the spatial vector, defining the RF source direction of arrival in the receiver-referred spherical reference frame. By a straightforward application of the reciprocity theorem:

\[
J_{\text{eq}}(\omega_k) = \frac{j}{U} \left[1 + R_0 Y_A(\omega_k) \right] \frac{\beta \eta}{2} \mathbf{E}_i(\mathbf{r};\omega_k) \cdot \mathbf{E}_d(\mathbf{r};\omega_k) \tag{2}
\]

where \(\cdot \) indicates the scalar product, \(\eta \) is the free-space wave impedance and \(Y_A(\omega) \) is the frequency-dependent antenna admittance computed by EM analysis. By computing the scalar product in the spherical coordinates reference system \((r, \theta, \phi)\) and by defining the transadmittance functions:

\[
G_\phi(\mathbf{r},\omega_k) = \frac{j}{U} \left[1 + R_0 Y_A(\omega_k) \right] \frac{\beta \eta}{2} e^{j\beta r} \mathbf{E}_i(\mathbf{r};\omega_k) \cdot \mathbf{E}_d(\mathbf{r};\omega_k) \tag{3}
\]

(2) may be rewritten in the form:

\[
J_{\text{eq}}(\omega_k) = G_\phi(\mathbf{r},\omega_k) \mathbf{E}_{\text{inc}}(\omega_k) + G_q(\mathbf{r},\omega_k) \mathbf{E}_{\text{d}}(\mathbf{r};\omega_k) \tag{4}
\]

Fig. 5 shows the circuit representation of (4), consisting of a 3-port network obtained by the parallel connection of two field-driven current sources with internal admittance \(Y_A(\omega) \), the driving fields being the scalar components of the incoming RF source \(\mathbf{E}_i \). This network is general and allows the actual receiver excitations (at port RF in Fig. 5) to be rigorously computed for any possible incident wave frequency and polarization. It is thus a powerful tool, to be adopted inside a nonlinear circuit simulator, to compute the actual received power (\(P_{\text{RF}} \)) of the antenna in the receiver front-end co-simulation.

Note that, with this approach, there is no need for an approximate rectenna effective area definition and the polarization mismatch between the rectenna and the incident field is automatically and rigorously taken into account. Furthermore this approach allows one to handle multi-source (multi-frequency) incident fields and, most of all, to straightforwardly compute, by means of a multi-tone HB analysis, the rectenna nonlinear regime for simultaneous incidence of various ambient RF sources.

Let \(\omega_k \) be the frequency of the \(k \)-th incident field, \(\mathbf{E}_i(\mathbf{r};\omega_k) \) the incident field at the harvester, \(\mathbf{E}_d(\mathbf{r};\omega_k) \) the field radiated by the antenna and \(\mathbf{E}_\text{r}(\mathbf{r};\omega_k) \) the far field. The far-field vector radiated by the antenna is:

\[
\mathbf{E}_\text{r}(\mathbf{r};\omega_k) = \mathbf{E}_i(\mathbf{r};\omega_k) + \mathbf{E}_d(\mathbf{r};\omega_k) \tag{1}
\]

The far-field vector radiated by the antenna is:

\[
\mathbf{E}_\text{r}(\mathbf{r};\omega_k) = \mathbf{E}_i(\mathbf{r};\omega_k) + \mathbf{E}_d(\mathbf{r};\omega_k) \tag{1}
\]

where \(\cdot \) indicates the scalar product, \(\eta \) is the free-space wave impedance and \(Y_A(\omega) \) is the frequency-dependent antenna admittance computed by EM analysis. By computing the scalar product in the spherical coordinates reference system \((r, \theta, \phi)\) and by defining the transadmittance functions:

\[
G_\phi(\mathbf{r},\omega_k) = \frac{j}{U} \left[1 + R_0 Y_A(\omega_k) \right] \frac{\beta \eta}{2} e^{j\beta r} \mathbf{E}_i(\mathbf{r};\omega_k) \cdot \mathbf{E}_d(\mathbf{r};\omega_k) \tag{3}
\]

(2) may be rewritten in the form:

\[
J_{\text{eq}}(\omega_k) = G_\phi(\mathbf{r},\omega_k) \mathbf{E}_{\text{inc}}(\omega_k) + G_q(\mathbf{r},\omega_k) \mathbf{E}_{\text{d}}(\mathbf{r};\omega_k) \tag{4}
\]

In Fig. 6(a) and Fig. 6(b) the layout of the RF part of a multi-band rectenna is shown; it consists of a four-band circularly polarized antenna to harvest from ambient sources, designed by exploiting Genetic Algorithm Optimization tools [58]. The phase shifter and the power divider stages are designed for the four bands of operation to guarantee circular polarization, which is a fundamental requirement in harvesting scenarios, where the incoming signal direction and polarization may be undefined \(a \text{ priori} \). In Fig. 6(c) the rigorous circuit equivalent current source representation is connected to the rectifier.
In this way, the actual received power from the rectenna is computed and used during the HB-based optimization process (1st step) to maximize the RF-to-DC conversion efficiency:

$$\eta_{RF-DC} = \frac{V_{DC} \cdot I_{DC}}{P_{RF}} \quad (5)$$

where V_{DC} and I_{DC} are the DC components of the rectified voltage and current at the optimum and fixed load port, while P_{RF} is the available power at the rectenna location, and represents the maximum power the antenna is able to deliver to the rectifying circuit. Due to the rigorous approach previously described, the available power can be accurately accounted for in the HB simulation, by means of:

$$P_{RF} = \left[\frac{J_{eq}(\omega)}{8 \ Re|Y_{A}(\omega)|} \right]$$

This design is carried out in RF stationary conditions, under the assumption of a fixed (optimum) load at the rectifier output port. The overall power conversion efficiency of the rectenna system of Fig. 6(a) is shown in Fig. 7, as a function of the actual received available power. The evaluated and measured results are obtained in the same realistic office scenario for two operating frequencies, but in the presence of a single RF source at a time.

In those applications where a power management unit is allowed and the harvester need not be directly connected to a defined load, the system efficiency may be further increased by dynamically tracking the optimum loading conditions, which vary with the nonlinear rectenna regime being a function of the actual received power P_{RF}. In this case, a 2nd optimization step is then carried out at baseband, where the load must be replaced by a ULTRA-LOW power switching converter, whose possible topology can be found in [54], able to dynamically track the Maximum Power Point (MPP) condition for any frequency and power level. This is obtained by keeping the rectified voltage V_{DC} at about one half of the open-circuit voltage, which has been demonstrated to be close to the MPP [59]. A novel dual-branch rectifier concept has been recently proposed to comply with energy harvesting platforms with start-up circuits [60]. In order to properly dimension the converter components, a SPICE-like time-domain model of the dispersive rectenna is used, to represent the converter source during its time-domain optimization. The converter duty cycle is set according to the entire system efficiency maximization, which means by minimizing the converter power consumption.

A suitable definition of the DC-to-DC conversion efficiency is used as the baseband design specification:

$$\eta_{DC-DC} = \frac{F \cdot E_{\text{HARV}}}{P_{DC} T_{C}} = \frac{P_{\text{HARV}}}{P_{DC}} \quad (7)$$

where a fraction ($F < 1, \sim 90\%$) of the maximum energy stored in the capacitor (E_{HARV}) is considered during the charging time T_{C} is evaluated.
V. MULTI-BAND RECTENNAS

Employing simulation techniques where both electromagnetic (EM) and nonlinear simulations are jointly considered, the Centre Tecnologic de Telecomunicacions de Catalunya (CTTC) has performed an optimized design of single band and multiband rectenna elements [61-65]. In these designs, the Thevenin equivalent circuit, which represents the antenna as an impedance matrix $[Z_a]$ in series with a voltage source V_{oc}, is used to simulate the presence of the antenna in a circuit simulator. The impedance matrix of the antenna is obtained in an electromagnetic simulator and the value of V_{oc} is calculated using reciprocity theory (Fig. 9) [63, 66]. Once the Thevenin equivalent of the antenna is introduced in the circuit simulator, it is possible to maximize the RF-to-DC conversion efficiency of the rectenna element, by using nonlinear simulations, such as harmonic balance in combination with optimization goals. In the case of single band rectennas, only one optimization goal at a single frequency is imposed, to maximize the RF-to-DC conversion efficiency. In multi-band rectenna designs, one goal per frequency band has to be imposed. Fig. 10 shows an example of a dual-band rectenna design in flexible polyethylene terephthalate (PET) substrate performed using this technique [61, 62]. The antenna element is a printed monopole antenna and the two operation frequencies of the rectenna are 850 MHz and 1.85 GHz. The performance of this rectenna is optimized for low input power levels (-15 dBm), for which the obtained RF-to-DC conversion efficiency is around 15%.

VI. SYNCHRONOUS LOW LOSS RECTIFIERS

A rectifier is designed with carefully selected Schottky diodes, either with a low knee voltage (“zero bias”) and low power handling capabilities, when interested in ambient energy scavenging, or with a low resistance and high breakdown voltage in the case of dedicated power transfer applications. The resulting rectenna may provide a very good RF-to-DC conversion efficiency, but usually under a limited power range.
In order to reduce conduction losses, the rectifying diode may be replaced by an actively controlled switching element (a transistor), leading to a synchronous or active rectifier [67]. Despite being common practice for low voltage DC-DC converters [67], the use of these topologies in RF/microwave wireless powering applications is still rare. Besides cost and power density considerations, the available transistors at these bands are generally of the depletion-mode (normally ON) type. This is the reason why properly driving their gate for switched-mode operation would demand an auxiliary negative biasing supply.

The University of Cantabria has been evaluating the use of synchronous rectifiers as an alternative to diode-based topologies for WPT applications. In [68], advantage was taken of the low positive threshold voltage of Enhancement Mode PHEMT (E-pHEMT) technology for its first introduction in a rectenna. Combining a lumped-element multi-harmonic class E topology with an external self-driving network, competitive efficiency figures have been recently demonstrated for power converters [67], the use of these topologies in RF/microwave wireless powering applications is still rare. Besides cost and power density considerations, the available transistors at these bands are generally of the depletion-mode (normally ON) type. This is the reason why properly driving their gate for switched-mode operation would demand an auxiliary negative biasing supply.

For simplifying the topology, while also assuring the desired synchronous class E operation, a drain terminating network based on a self-resonant coil [70] may be combined with the use of the device intrinsic gate-to-drain capacitance, C_{gd} [71]. The efficiency at lower power levels may be also improved with a bootstrap type connection of the rectified voltage to the gate terminal. The proposed schematic is represented in Fig. 11(a), together with details of its implementation with a VMMK-1218 E-pHEMT from Avago at 2.45 GHz in Fig. 11(b).

Having a low ON-state resistance, $R_{on} = 3.6 \, \Omega$, and a very small output capacitance, $C_{out} = 0.19 \, \text{pF}$, the nominal zero voltage and zero voltage derivative switching conditions (ZVS & ZVDS) may be approximated with a simple C_{pLout} network at drain side of the VMMK-1218. The $L_{in}C_{in}$ combination allows properly driving the gate terminal, through the C_{gd} intrinsic path. The slightly positive gate biasing voltage, required for improving the low level conversion efficiency (in small-signal regime, the device output conductance has its maximum variation just at the threshold value [72]), is derived from the output voltage. When increasing the input power, the gate-to-source voltage is conveniently lowered or adapted through the introduction of an appropriate biasing resistor, R_{in}, taking advantage of the small rectified current appearing at gate terminal.

In Fig. 11(b), the measured results for the 2.45 GHz rectifier are also plotted together with those for an implementation at 900 MHz. As can be appreciated, high efficiency figures (over 64% and 76%, respectively) may be assured along a significant power range (above 20 dB), with measured peaks of 77% and 88%. Using transistor-based topologies, the rectifier may be easily reconfigured to an oscillating (inverse rectenna) mode, as recently proved in [73]. E-PHEMTs are also amenable for the design of the required fast response MPP tracking DC/DC converters.

VII. SIGNAL DESIGN FOR MAXIMUM WPT EFFICIENCY

At the University of Aveiro, the research focus is in the field of WPT on the design of special waveforms, tailored to increase the RF to DC energy conversion efficiency in the rectifier circuits. In this respect, the use of multi-sine signals has been evaluated as an alternative to single carrier generation. Fig. 12 presents the predicted behavior of the multi-sine, after passing through a diode based RF-DC converter. As can be seen, the peaks of the multi-sine create a rise of the average voltage being rectified and converted back to DC [62].

These specially designed signals can later be applied to RF-DC converters efficiently. Fig. 13 shows the power gain obtained when comparing the obtained DC voltage when using a multi-sine signal and when using a single-tone signal [74]. This power gain is shown versus the input power level and for different number of tones in the multisine signal.
Activities in this field have also been carried out by CTTC, where chaotic waveforms were studied, to be used in WPT systems to increase the RF-to-DC conversion efficiency in rectifier circuits [62,75]. Fig. 14 shows an example where using chaotic waveforms is possible to increase the rectifier conversion efficiency up to 20%, when compared to a single tone signal. The used chaotic generator is a single transistor circuit that creates a waveform with a higher Peak-to-Average Power Ratio (PAPR), in comparison with the one tone signal (Fig. 15), which allows reaching the threshold voltage of the Schottky diode for lower average input power levels if compared to the single-tone signal.

![Fig. 14. RF-to-DC conversion efficiency using chaotic waveforms and a one tone signal.](image)

In the same area, further work has been performed to synthesize high PAPR signals using different schemes, such as the one in [76], where mode-locked oscillators are used to efficiently create a multi-tone signal to be used in WPT systems.

![Fig. 15. Time domain waveforms for the chaotic generator and a one-tone signal](image)

VIII. 24 GHZ AND MILLIMETER WAVE RECTENNAS

Radio frequency identification and sensing at the 24 GHz Industrial, Scientific and Medical (ISM) frequency band and at millimeter wave frequencies (Millimeter Wave Identification - MMID) presents a great potential for short range, large bandwidth communication, identification and sensing systems [77]. Toward this goal, Fig.16 shows a prototype of a 24 GHz rectenna element implemented in substrate integrated waveguide technology (SIW), where the antenna element is an SIW slot antenna and the rectifier circuit is integrated inside the SIW cavity [78]. The rectenna achieves 15% RF to DC conversion efficiency for 8 dBm input power. This type of structure is also suitable for integration in rectenna arrays.

![Fig. 16. Prototype of a 24 GHz rectenna element.](image)
Further research in Europe related to mm-wave rectennas includes on-board harvesting in satellites [79], where it is demonstrated that power from the satellite antenna side-lobes can be harvested.

IX. SOLAR-TO-ELECTROMAGNETIC CONVERTERS AND RFID

Towards creating low power, low cost and fully autonomous WPT systems to wirelessly power up low power devices, CTTC has worked on the design of solar to electromagnetic (EM) converters [80]-[82]. These circuits collect solar energy that is converted to DC electrical power; the DC power is used to bias active antenna oscillators that are generating and radiating an EM signal at the oscillation frequency and that will be used for WPT. With these types of designs, it is important to design efficient oscillator circuits. Fig. 17 shows several credit card size prototypes of solar to EM converters. These designs are quite compact, as the solar cells share the same area as the antenna elements or ground plane. By properly avoiding key areas of the antennas, the effect that the placement of the solar cell has over its performance can be minimized [80,81].

Following the same concept, solar assisted RFIDs have been designed [82], where a solar cell is used to power-up an oscillator that feeds an RF signal to the rectifier circuit of the RFID (Fig. 18). In this way, in addition to the received signal from the reader, the RFID tag is receiving the RF signal from the oscillator, which leads to a reduction in the amount of power that the reader needs to transmit to power up the RFID tag.

This article has presented a non-exhaustive list of recent activities dedicated to the field of wireless power transmission. WPT is an interesting and challenging field attracting contributions from several areas including material science and nanotechnology, power electronics, applied electromagnetics and RF and microwave electronics. Additionally, it spans over a wide range of frequencies from kHz to millimeter waves, as well as a wide range of power levels from μW to kW, posing a variety of challenges to the designer, some of which have been highlighted in this paper. Recent research and technological advances demonstrate its potential towards many engineering applications, and as an enabling technology for the Internet-of-Things.

REFERENCE

Alessandra Costanzo (M’99-SM-13) received the Dr.Ing. degree (summa cum laude) in electronic engineering from the University of Bologna, Bologna, Italy, in 1987. In 1989, she joined the University of Bologna, as a Research Associate. Since 2001, she has been an Associate Professor of electromagnetic (EM) fields with the Polo di Cesena, University of Bologna. Her teaching and research activities have focused on several topics, including electrical and thermal characterization and modeling of nonlinear (NL) devices and simulation and design of active microwave integrated circuits. She currently coordinates research activities devoted to the development of miniaturized transceivers for microwave RFID applications, wearable solutions, RF harvesting, and wireless power transmission.

Dr. Costanzo is a member of the Technical Program Committee, IEEE Microwave Theory and Techniques Society (IEEE MTT-S) International Microwave Symposium (IMS) and of the European Microwave Week (EuMW). She is vice-chair of MTT-S TC26 and member of MTT-S TC-24. She serves on the review board of many IEEE publication such as the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES and the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS.

Hendrik Rogier (S’96–A’99–M’00–SM’06) was born in 1971. He received the Electrical Engineering and the Ph.D. degrees from Ghent University, Gent, Belgium, in 1994 and in 1999, respectively. He is currently a Full Professor with the Department of Information Technology of Ghent University, Belgium. Guest Professor at IMEC, Belgium, and Visiting Professor at the University of Buckingham, UK. From October 2003 to April 2004, he was a Visiting Scientist at the Mobile Communications Group of the VIenna University of Technology. He authored and coauthored about 90 papers in international journals and about 105 contributions in conference proceedings. Dr. Rogier is serving as a member of the Editorial Boards of IET Science, Measurement Technology and of Wireless Power Transfer. He also acts as the URSI Commission B representative for Belgium. He is a member of MTT-24 Technical Committee on RFID technology and a member of the Governing Board of EuMA Topical Group MAGEO on Microwaves in Agriculture, Environment and Earth Observation. His current research interests are antenna systems, radiowave propagation, body-centric communication, numerical electromagnetics, electromagnetic compatibility and power/signal integrity.

Dr. Rogier was twice awarded the URSI Young Scientist Award, at the 2001 URSI Symposium on Electromagnetic Theory and at the 2002 URSI General Assembly.

Ana Collado (M’07–SM’12) received the M.Sc. and Ph.D. degrees in Telecommunications Engineering from the University of Cantabria, Spain, in 2002 and 2007 respectively. She is currently a Senior Research Associate and the Project Management Coordinator at the Technological Telecommunications Center of Catalonia (CTTC), Barcelona, Spain where she performs her professional activities. Her professional interests include active antennas, substrate integrated waveguide structures, nonlinear circuit design, and energy harvesting and wireless power transmission (WPT) solutions for self-sustainable and energy efficient systems. She has participated in several national and international research projects and has co-authored over 70 papers in journals and conferences. Among her activities she has collaborated in the organization of several international workshops in different countries of the European Union and also a Training School for PhD students. She is a Marie Curie Fellow of the FP7 project Symbiotic Wireless Autonomous Powered system (SWAP). She was finalist in the 2007 IEEE International microwave Symposium Symposium student paper competition. She serves in the Editorial Board of the Radioengineering Journal and she is currently an Associate Editor of the IEEE Microwave Magazine and a member of the IEEE MTT-26 Technical Committee.

José A. García (S’98–A’00–M’02) received the Telecommunication Engineering degree from the Instituto Superior Politécnico "José A. Echeverría" (ISPJAE), Havana, Cuba, in 1988, and the Ph.D. degree from the University of Cantabria, Santander, Spain, in 2000. From 1988 to 1991, he was a Radio System Engineer with a high-frequency (HF) communication center, where he designed antennas and HF circuits. From 1991 to 1995, he was an Instructor Professor with the Telecommunication Engineering Department, ISPJAE. From 1999 to 2000, he was with Thaumat Global Technology Systems, as a Radio Design Engineer involved with base-station arrays. From 2000 to 2001, he was a Microwave Design Engineer/Project Manager with TTI Norte, during which time he was in charge of the research line on SDR while involved with active antennas. From 2002 to 2005, he was a Senior Research Scientist with the University of Cantabria, where he is currently an Associate Professor. During 2011, he was a Visiting Researcher with the Microwave and RF Research Group, University of Colorado at Boulder. His main research interests include nonlinear characterization and modeling of active devices, as well as the design of power RF/microwave amplifiers, high-efficiency transmitting architectures (incorporating arrays), and RF dc/dc power converters.

Stepan Lucyszyn (M’91–SM’04, F’14) received the Ph.D. degree in electronic engineering from King’s College London (University of London) and D.Sc. (higher doctorate) degree from Imperial College London in 1992 and 2010, respectively. Dr. Lucyszyn is currently a Reader (Associate Professor) in Millimetre- wave Electronics and Director of the Centre for Terahertz Science and Engineering, at Imperial College London. After working in industry, as a satellite systems engineer for maritime and military communications, he spent the first 12 years researching microwave and millimetre-wave RFIC/MMICs, followed by RF MEMS technologies. Dr. Lucyszyn has (co-)authored more than 150 papers and 11 book chapters in applied physics and electronic engineering, and delivered many invited presentations at international conferences. From 2005 to 2009 he served as an Associate Editor for the IEEE/ASME Journal of Microelectromechanical Systems. In 2011, Dr Lucyszyn was the Chairman of the 41st European Microwave Conference, held in Manchester, UK. In 2005, he was elected Fellow of the Institution of Electrical Engineers, UK, and Fellow of the Institute of Physics, UK, and in 2008 was invited as a Fellow of the Electromagnetics Academy, USA. In 2009 he was appointed an IEEE Distinguished Microwave Lecturer for 2010–2012 and an Emiritis DML for 2013. In 2013, Dr Lucyszyn was appointed a European Microwave Lecturer (EML) by the European Microwave Association and made a Fellow of the IEEE in 2014.

Paolo Mezzanotte was born in Perugia, Italy, in 1965. He received the Ph.D. degree from the University of Perugia, Perugia, Italy, in 1997. Since 1992, he was involved with FDTD analysis of microwave structures in cooperation with the Department of Electronic and Information Engineering (DIEI), University of Perugia. In 1999, he was appointed Research associate. Since January 2007, he is Associate Professor with the same University, teaching classes of Radiofrequency Engineering. His research activities concern numerical methods and CAD techniques for passive microwave structures and the analysis and design of microwave and millimeter-wave circuits. More recently his research interests were mainly focused on the study of advanced technologies such as LTCC, RF- MEMS, and microwave circuits printed on green substrates. These research activities are testified by more than one hundred publications in the most important specialized journals and at the main conferences of the microwave scientific community. He serves as reviewer of a number of IEEE journals and he belongs to the TARGET (Top Amplifier Research Group in a European Team) and to the AMICOM (Advanced MEMS for RF and Millimeterwave Communications) Networks of Excellence. Paolo Mezzanotte was the co-chairman of the seventh edition of the international workshop “Computational Electromagnetics in Time-Domain” (CEM-TD 2007). The present H-index of Paolo Mezzanotte (ISI journals) is equal to 13.
Diego Masotti (M’00) received the Dr.Ing. degree in electronic engineering and Ph.D. degree in electric engineering from the University of Bologna, Bologna, Italy, in 1990 and 1997, respectively.

In October 1998, he joined the University of Bologna, as a Research Associate of electromagnetic (EM) fields. Since 2011, he has been a member of the Paper Review Board of *IET-Circuit Devices and Systems*. His research interests are in the areas of nonlinear (NL) microwave circuit simulation and design (with emphasis on modern computer-aided design (CAD) techniques for large-size problems) and NL/EM codesign of integrated subsystems/systems.

Dr. Masotti is a member of the Editorial Review Board of the *IEEE Transactions on Microwave Theory and Techniques* and *IEEE Communications Letters* since 2004 and 2010, respectively.

Alírio J. Soares Boaventura (S’11) was born in Santo Antão, Cape Verde, in 1985. He received the Master degree in electronics and telecommunications engineering from the University of Aveiro, Portugal, in 2009, and he is currently working toward the Ph.D. degree at the same university.

From 2008 to 2010, he was with Acronym-IT, a Portuguese manufacturing company specialized in Access Control and RFID systems. In 2010, he joined the Institute of Telecommunications, Aveiro, Portugal, as a Researcher. His main research interests include passive RFID and sensors, low-power wireless systems, WPT and energy harvesting, and computer-aided design (CAD)/modeling for RFID. He has been a Reviewer for the International Journal of Emerging and Selected Topics in Circuits and Systems (JETCAS).

Mr. Boaventura has also served as a reviewer for the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES.

As the best student of Cape Verde in 2004, Alírio Boaventura was the recipient of a Merit Scholarship for graduation from the Gulbenkian Foundation (2004–2009). In 2011, he was a finalist of the Student Paper Competition of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) International Microwave Symposium (IMS). He was the recipient of the 2011 URSI/ANACOM Prize, awarded by the URSI-Portugal Section and the Portuguese National Authority of Communications (ANACOM) for the best 2011 work in radio communications. Alírio is the recipient of an IEEE MTT-S Graduate Fellowship Award for 2013.

David C. Yates (M’03) received the M.Eng. degree in electrical and electronic engineering and the Ph.D. degree from Imperial College London, London, U.K., in 2001 and 2007, respectively.

His doctoral research was focused on ultralow-power wireless links. He is currently a Research Associate with the Circuits and Systems Group, Department of Electrical and Electronic Engineering, Imperial College London. His research interests include ultralow power analog and RF circuits for sensor networks, antenna array systems, and wireless power.

Pavel D. Mitcheson (SM’12) received the M.Eng. degree in electrical and electronic engineering and the Ph.D. degree from Imperial College London, U.K., in 2001 and 2005, respectively.

He is currently a Senior Lecturer with the Control and Power Research Group, Electrical and Electronic Engineering Department, Imperial College London. His research interests are energy harvesting, power electronics, and wireless power transfer. He is involved with providing power to applications in circumstances where batteries and cables are not suitable. His work has been sponsored by the European Commission, EPSRC and several companies.

Dr. Mitcheson is a fellow of the Higher Education Academy.

Diego Masotti (M’00) received the Dr.Ing. degree in electronic engineering and Ph.D. degree in electric engineering from the University of Bologna, Bologna, Italy, in 1990 and 1997, respectively.

In October 1998, he joined the University of Bologna, as a Research Associate of electromagnetic (EM) fields. Since 2011, he has been a member of the Paper Review Board of *IET-Circuit Devices and Systems*. His research interests are in the areas of nonlinear (NL) microwave circuit simulation and design (with emphasis on modern computer-aided design (CAD) techniques for large-size problems) and NL/EM codesign of integrated subsystems/systems.

Dr. Masotti is a member of the Editorial Review Board of the *IEEE Transactions on Microwave Theory and Techniques* and *IEEE Communications Letters* since 2004 and 2010, respectively.

Alírio J. Soares Boaventura (S’11) was born in Santo Antão, Cape Verde, in 1985. He received the Master degree in electronics and telecommunications engineering from the University of Aveiro, Portugal, in 2009, and he is currently working toward the Ph.D. degree at the same university.

From 2008 to 2010, he was with Acronym-IT, a Portuguese manufacturing company specialized in Access Control and RFID systems. In 2010, he joined the Institute of Telecommunications, Aveiro, Portugal, as a Researcher. His main research interests include passive RFID and sensors, low-power wireless systems, WPT and energy harvesting, and computer-aided design (CAD)/modeling for RFID. He has been a Reviewer for the International Journal of Emerging and Selected Topics in Circuits and Systems (JETCAS).

Mr. Boaventura has also served as a reviewer for the IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES.

As the best student of Cape Verde in 2004, Alírio Boaventura was the recipient of a Merit Scholarship for graduation from the Gulbenkian Foundation (2004–2009). In 2011, he was a finalist of the Student Paper Competition of the IEEE Microwave Theory and Techniques Society (IEEE MTT-S) International Microwave Symposium (IMS). He was the recipient of the 2011 URSI/ANACOM Prize, awarded by the URSI-Portugal Section and the Portuguese National Authority of Communications (ANACOM) for the best 2011 work in radio communications. Alírio is the recipient of an IEEE MTT-S Graduate Fellowship Award for 2013.

David C. Yates (M’03) received the M.Eng. degree in electrical and electronic engineering and the Ph.D. degree from Imperial College London, London, U.K., in 2001 and 2007, respectively.

His doctoral research was focused on ultralow-power wireless links. He is currently a Research Associate with the Circuits and Systems Group, Department of Electrical and Electronic Engineering, Imperial College London. His research interests include ultralow power analog and RF circuits for sensor networks, antenna array systems, and wireless power.

Paul D. Mitcheson (SM’12) received the M.Eng. degree in electrical and electronic engineering and the Ph.D. degree from Imperial College London, London, U.K., in 2001 and 2005, respectively.

He is currently a Senior Lecturer with the Control and Power Research Group, Electrical and Electronic Engineering Department, Imperial College London. His research interests are energy harvesting, power electronics, and wireless power transfer. He is involved with providing power to applications in circumstances where batteries and cables are not suitable. His work has been sponsored by the European Commission, EPSRC and several companies.

Dr. Mitcheson is a fellow of the Higher Education Academy.

Maria de las Nieves Ruiz Lavín (S’12) was born in Santander, Spain, in 1983. She received the Telecommunication Engineering degree from the University of Cantabria (UC) in 2010 and the MsC degree in 2013. She is currently working toward the PhD degree at the Dpt. of Communications Engineering (DICOM), University of Cantabria, in Spain.

Her research interests include high-efficiency microwave power amplifiers, rectifiers, oscillators and DC/DC converters.

Manuel Piñuela (M’12) received the BSc. degree in electrical and electronic engineering from the National Autonomous University of Mexico (UNAM), Mexico City, Mexico, in 2007, and is currently working toward the Ph.D. degree at Imperial College London, London, U.K.

From 2006 to 2009, he worked in industry as an Electronic Design and Project Engineer for companies focused on oil and gas services in both Mexico and the US. His research interests are wireless power transfer,