Mostrar el registro sencillo

dc.contributor.authorLuengo García, David
dc.contributor.authorMonzón García, Sandra
dc.contributor.authorTrigano, Tom
dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorArtés Rodríguez, Antonio
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-01-05T18:06:55Z
dc.date.available2017-01-05T18:06:55Z
dc.date.issued2015
dc.identifier.issn1069-2509
dc.identifier.issn1875-8835
dc.identifier.otherCSD2008-00010es_ES
dc.identifier.otherTEC2010-19545-C04-03es_ES
dc.identifier.otherTEC2012-38800-C03-01es_ES
dc.identifier.otherTEC2012-38883-C02-01es_ES
dc.identifier.otherTEC2012-38058-C03-01es_ES
dc.identifier.urihttp://hdl.handle.net/10902/9924
dc.description.abstractThe problem of blind sparse analysis of electrogram (EGM) signals under atrial fibrillation (AF) conditions is considered in this paper. A mathematical model for the observed signals that takes into account the multiple foci typically appearing inside the heart during AF is firstly introduced. Then, a reconstruction model based on a fixed dictionary is developed and several alternatives for choosing the dictionary are discussed. In order to obtain a sparse solution, which takes into account the biological restrictions of the problem at the same time, the paper proposes using a Least Absolute Shrinkage and Selection Operator (LASSO) regularization followed by a post-processing stage that removes low amplitude coefficients violating the refractory period characteristic of cardiac cells. Finally, spectral analysis is performed on the clean activation sequence obtained from the sparse learning stage in order to estimate the number of latent foci and their frequencies. Simulations on synthetic signals and applications on real data are provided to validate the proposed approach.es_ES
dc.description.sponsorshipThis work has been partly financed by the Spanish government through the CONSOLIDER-INGENIO 2010 program (COMONSENS project, ref. CSD2008-00010), as well as projects COSIMA (TEC2010-19545-C04-03), ALCIT (TEC2012 38800- C03-01), COMPREHENSION (TEC2012-38883-C02-01) and DISSECT (TEC2012-38058-C03-01).es_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.publisherIOS Presses_ES
dc.rights© IOS Press. The final publication is available at IOS Press through https://doi.org/10.3233/ICA-140471es_ES
dc.sourceIntegrated Computer-Aided Engineering, 2015,22(1), 71-85es_ES
dc.subject.otherBiomedical signal processinges_ES
dc.subject.otherAtrial fibrillation electrogramses_ES
dc.subject.otherSparsity-aware learninges_ES
dc.subject.otherLASSO regularizationes_ES
dc.subject.otherSpectral analysises_ES
dc.titleBlind analysis of atrial fibrillation electrograms: A sparsity-aware formulationes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.3233/ICA-140471es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.3233/ICA-140471
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo