Mostrar el registro sencillo

dc.contributor.authorMartínez Torre, Raquel 
dc.contributor.authorGonzález Diego, Antonio 
dc.contributor.authorMadrazo Maza, Alfredo 
dc.contributor.authorMañana Canteli, Mario 
dc.contributor.authorArroyo Gutiérrez, Alberto 
dc.contributor.authorCavia Soto, María de los Ángeles 
dc.contributor.authorDomingo Fernández, Rodrigo 
dc.contributor.authorSierra Molleda, Alberto
dc.contributor.authorLaso Pérez, Alberto 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2017-01-02T09:27:38Z
dc.date.available2017-01-02T09:27:38Z
dc.date.issued2014-04
dc.identifier.isbn978-84-616-8196-9
dc.identifier.issn2172-038X
dc.identifier.otherIPT-2011-1447-920000es_ES
dc.identifier.urihttp://hdl.handle.net/10902/9865
dc.description.abstractAmpacity techniques have been used by Distributor System Operators (DSO) and Transport System Operators (TSO) in order to increase the static rate of transport and distribution infrastructures, especially those who are used for the grid integration of renewable energy. One of the main drawbacks of this technique is related with the fact that DSO and TSO need to do some planning tasks in advance. In order to perform a previous planning it is compulsory to forecast the weather conditions in the short-time. This paper analyses the application of the neural network to the estimation of the ampacity in order to increase the amount of power produced by wind farms that can be integrated into the grid.es_ES
dc.description.sponsorshipThis work was supported by the Spanish Government under the R+D initiative INNPACTO with reference IPT-2011-1447-920000.es_ES
dc.format.extent4 p.es_ES
dc.language.isoenges_ES
dc.publisherThe European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ)es_ES
dc.rights© The European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ)es_ES
dc.sourceRenewable Energy & Power Quality Journal, 2014, Vol.1 (12), 120-123es_ES
dc.sourceInternational Conference on Renewable Energies and Power Quality (ICREPQ’14), Córdobaes_ES
dc.subject.otherWind energyes_ES
dc.subject.otherAmpacityes_ES
dc.subject.otherNeural networks (NNs)es_ES
dc.subject.otherGrid integrationes_ES
dc.subject.otherMonitoring systemes_ES
dc.titleAmpacity forecasting using neural networkses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.rights.accessRightsopenAccesses_ES
dc.type.versionpublishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo