Mostrar el registro sencillo

dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-11-10T13:36:16Z
dc.date.available2016-11-10T13:36:16Z
dc.date.issued2015
dc.identifier.isbn978-1-4799-1963-5
dc.identifier.isbn978-1-4799-1964-2
dc.identifier.otherTEC2013-47141-C4-3-Res_ES
dc.identifier.urihttp://hdl.handle.net/10902/9540
dc.description.abstractThis paper focuses on a linear model with noisy inputs in which the performance of the conventional Total Least Squares (TLS) approach is (maybe surprisingly) far from satisfactory. Under the typical Gaussian assumption, we obtain the maximum likelihood (ML) estimator of the system response. This estimator promotes a reasonable balance between the empirical and theoretical variances of the residual errors, which suggests the name of Balanced Least Squares (BLS). The solution of the associated optimization problem is based on its reformulation as a rank constrained semidefinite program (SDP), for which we show that the relaxation is tight with probability one. Both TLS and BLS can be seen as regularized LS estimators, but the (possibly negative) regularization in BLS is softer than its TLS counterpart, which avoids the inconsistency of TLS in our particular model.es_ES
dc.description.sponsorshipThis work has been supported by the Spanish Government, Ministerio de Ciencia e Innovación, under project RACHEL (TEC2013-47141-C4-3-R).es_ES
dc.format.extent4 p.es_ES
dc.language.isoenges_ES
dc.publisherIEEEes_ES
dc.rights© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.es_ES
dc.sourceIEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Cancún, México, 2015, 1-4es_ES
dc.subject.otherBalanced Least Squares (BLS)es_ES
dc.subject.otherErrors in Variables (EIV)es_ES
dc.subject.otherTotal Least Squares (TLS)es_ES
dc.subject.otherSemidefinite Programming (SDP)es_ES
dc.subject.otherRank Constrained Optimizationes_ES
dc.titleBalanced Least Squares: Linear model estimation with noisy inputses_ES
dc.typeinfo:eu-repo/semantics/conferenceObjectes_ES
dc.relation.publisherVersionhttps://doi.org/10.1109/CAMSAP.2015.7383721es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1109/CAMSAP.2015.7383721
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo