• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Economía
    • D10 Artículos
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Economía
    • D10 Artículos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Differencing techniques in semi-parametric panel data varying coefficient models with fixed effects: a Monte Carlo study.

    Ver/Abrir
    DifferencingTechniqu ... (178.8Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/9523
    DOI: 10.1007/s00180-014-0549-3
    ISSN: 0943-4062
    ISSN: 1613-9658
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Rodríguez-Poo, Juan M.Autoridad Unican; Soberón Velez, Alexandra PilarAutoridad Unican
    Fecha
    2015-09
    Derechos
    © Springer “The final publication is available at Springer via http://dx.doi.org/10.1007/s00180-014-0549-3
    Publicado en
    Computational Statistics, september 2015, Volume 30, Issue 3, pp 885-906
    Editorial
    Springer Verlag
    Enlace a la publicación
    http://dx.doi.org/10.1007/s00180-014-0549-3
    Palabras clave
    Semi-parametric varying coefficients model
    Panel data
    Local linear regression
    One-step backfitting algorithm
    First-differences estimator
    Within estimator
    Monte Carlo simulations
    Resumen/Abstract
    Recently, some new techniques have been proposed for the estimation of semi-parametric fixed effects varying coefficient panel data models. These new techniques fall within the class of the so-called differencing estimators. In particular, we consider first-differences and within local linear regression estimators. Analyzing their asymptotic properties it turns out that, keeping the same order of magnitude for the bias term, these estimators exhibit different asymptotic bounds for the variance. In both cases, the consequences are suboptimal non-parametric rates of convergence. In order to solve this problem, by exploiting the additive structure of this model, a one-step backfitting algorithm is proposed. Under fairly general conditions, it turns out that the resulting estimators show optimal rates of convergence and exhibit the oracle efficiency property. Since both estimators are asymptotically equivalent, it is of interest to analyze their behavior in small sample sizes. In a fully parametric context, it is well-known that, under strict exogeneity assumptions the performance of both first-differences and within estimators is going to depend on the stochastic structure of the idiosyncratic random errors. However, in the non-parametric setting, apart from the previous issues other factors such as dimensionality or sample size are of great interest. In particular, we would be interested in learning about their relative average mean square error under different scenarios. The simulation results basically confirm the theoretical findings for both local linear regression and one-step backfitting estimators. However, we have found out that within estimators are rather sensitive to the size of number of time observations.
    Colecciones a las que pertenece
    • D10 Artículos [661]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España