Mostrar el registro sencillo

dc.contributor.authorRodríguez-Poo, Juan M. 
dc.contributor.authorSoberón Velez, Alexandra Pilar 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-11-10T10:57:32Z
dc.date.available2017-01-31T03:45:09Z
dc.date.issued2015-01
dc.identifier.issn0047-259X
dc.identifier.issn1095-7243
dc.identifier.otherECO2013-48326-C2-2-Pes_ES
dc.identifier.urihttp://hdl.handle.net/10902/9522
dc.description.abstractIn this paper, we consider the nonparametric estimation of a varying coefficient fixed effect panel data model. The estimator is based in a within (un-smoothed) transformation of the regression model and then a local linear regression is applied to estimate the unknown varying coefficient functions. It turns out that the standard use of this technique produces a non-negligible asymptotic bias. In order to avoid it, a high dimensional kernel weight is introduced in the estimation procedure. As a consequence, the asymptotic bias is removed but the variance is enlarged, and therefore the estimator shows a very slow rate of convergence. In order to achieve the optimal rate, we propose a one-step backfitting algorithm. The resulting two-step estimator is shown to be asymptotically normal and its rate of convergence is optimal within its class of smoothness functions. It is also oracle efficient. Further, this estimator is compared both theoretically and by Monte-Carlo simulation against other estimators that are based in a within (smoothed) transformation of the regression model. More precisely the profile least-squares estimator proposed in this context in Sun et al. (2009). It turns out that the smoothness in the transformation enlarges the bias and it makes the estimator more difficult to analyze from the statistical point of view. However, the first step estimator, as expected, shows a bad performance when compared against both the two step backfitting algorithm and the profile least-squares estimator.es_ES
dc.description.sponsorshipThe authors acknowledge fi nancial support from the Programa Estatal de Fomento de la Investigación Ciencia y Técnica de Excelencia/ Spanish Ministery of Economy and Competitiveness. Ref. ECO2013-48326-C2-2-P.es_ES
dc.format.extent28 p.es_ES
dc.language.isoenges_ES
dc.publisherAcademic Press Inc.es_ES
dc.rights© 2015 Elsevier - Atribución-NoComercial-SinDerivadas 3.0 Españaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceJournal of Multivariate Analysis, 2015, 133, 95-122es_ES
dc.subject.otherVarying coefficient modelses_ES
dc.subject.otherFixed effectses_ES
dc.subject.otherPanel dataes_ES
dc.subject.otherLocal linear regressiones_ES
dc.subject.otherOracle efficient estimatores_ES
dc.subject.otherWithin estimatores_ES
dc.subject.otherProfile least squares estimatores_ES
dc.titleNonparametric estimation of fixed effects panel data varying coefficient modelses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttps://doi.org/10.1016/j.jmva.2014.09.008es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.jmva.2014.09.008
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2015 Elsevier - Atribución-NoComercial-SinDerivadas 3.0 EspañaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2015 Elsevier - Atribución-NoComercial-SinDerivadas 3.0 España