On the number of interference alignment solutions for the K-user MIMO channel with constant coefficients
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2015-11Derechos
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Publicado en
IEEE Transactions on Information Theory, 2015, 61(11), 6028 - 6048
Editorial
Institute of Electrical and Electronics Engineers Inc.
Enlace a la publicación
Palabras clave
Interference alignment
MIMO Interference Channel
Polynomial Equations
Algebraic Geometry
Resumen/Abstract
In this paper, we study the number of different interference alignment (IA) solutions in a K-user multiple-input multiple-output (MIMO) interference channel, when the alignment is performed via beamforming and no symbol extensions are allowed. We focus on the case where the number of IA equations matches the number of variables. In this situation, the number of IA solutions is finite and constant for any channel realization out of a zero-measure set and, as we prove in this paper, it is given by an integral formula that can be numerically approximated using Monte Carlo integration methods. More precisely, the number of alignment solutions is the scaled average of the determinant of a certain Hermitian matrix related to the geometry of the problem. Interestingly, while the value of this determinant at an arbitrary point can be used to check the feasibility of the IA problem, its average (properly scaled) gives the number of solutions. For single-beam systems, the asymptotic growth rate of the number of solutions is analyzed and some connections with classical combinatorial problems are presented. Nonetheless, our results can be applied to arbitrary interference MIMO networks, with any number of users, antennas, and streams per user.
Colecciones a las que pertenece
- D12 Artículos [360]
- D12 Proyectos de Investigación [517]