• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Ingeniería de Comunicaciones (DICOM)
    • D12 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An asymptotic GLRT for the detection of cyclostationary signals

    Ver/Abrir
    AsymptoticGLRTDetect ... (156.2Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/9441
    DOI: 10.1109/ICASSP.2014.6854234
    ISBN: 978-1-4799-2894-1
    ISBN: 978-1-4799-2893-4
    ISBN: 978-1-4799-2892-7
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Ramírez García, David; Scharf, Louis L.Autoridad Unican; Vía Rodríguez, JavierAutoridad Unican; Santamaría Caballero, Luis IgnacioAutoridad Unican; Schreier, Peter J.
    Fecha
    2014
    Derechos
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Publicado en
    IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2014), Florence, Italy, 2014, 3415-3419
    Editorial
    IEEE
    Enlace a la publicación
    https://doi.org/10.1109/ICASSP.2014.6854234
    Palabras clave
    Cyclostationarity
    Generalized likelihood ratio test (GLRT)
    Hypothesis test
    Maximum likelihood (ML) estimation
    Toeplitz matrices
    Resumen/Abstract
    We derive the generalized likelihood ratio test (GLRT) for detecting cyclostationarity in scalar- valued time series. The main idea behind our approach is Gladyshev’s relationship, which states that when the scalar-valued cyclostationary signal is blocked at the known cycle period it produces a vectorvalued wide-sense stationary (WSS) process. This result amounts to saying that the covariance matrix of the vector obtained by stacking all observations of the time series is block-Toeplitz if the signal is cyclostationary, and Toeplitz if the signal is wide-sense stationary. The derivation of the GLRT requires the maximum likelihood estimates of Toeplitz and block-Toeplitz matrices. This can be managed asymptotically (for large number of samples) exploiting Szegö’s theorem and its generalization for vector-valued processes. Simulation results show the good performance of the proposed GLRT.
    Colecciones a las que pertenece
    • D12 Congresos [593]
    • D12 Proyectos de Investigación [517]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España