Mostrar el registro sencillo

dc.contributor.authorRamírez García, David
dc.contributor.authorSchreier, Peter J.
dc.contributor.authorVía Rodríguez, Javier 
dc.contributor.authorSantamaría Caballero, Luis Ignacio 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-10-26T16:12:55Z
dc.date.available2016-10-26T16:12:55Z
dc.date.issued2014-02
dc.identifier.issn0165-1684
dc.identifier.issn1872-7557
dc.identifier.urihttp://hdl.handle.net/10902/9395
dc.description.abstractThe separation of a complex mixture based solely on second-order statistics can be achieved using the Strong Uncorrelating Transform (SUT) if and only if all sources have distinct circularity coefficients. However, in most problems we do not know the circularity coefficients, and they must be estimated from observed data. In this work, we propose a detector, based on the generalized likelihood ratio test (GLRT), to test the separability of a complex Gaussian mixture using the SUT. For the separable case (distinct circularity coefficients), the maximum likelihood (ML) estimates are straightforward. On the other hand, for the non-separable case (at least one circularity coefficient has multiplicity greater than one), the ML estimates are much more difficult to obtain. To set the threshold, we exploit Wilks' theorem, which gives the asymptotic distribution of the GLRT under the null hypothesis. Finally, numerical simulations show the good performance of the proposed detector and the accuracy of Wilks' approximation.es_ES
dc.format.extent35 p.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rights© 2014 Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaes_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceSignal Processing, 2014, 95, 49–57es_ES
dc.subject.otherComplex independent component analysis (ICA)es_ES
dc.subject.otherCircularity coefficientses_ES
dc.subject.otherGeneralized likelihood ratio test (GLRT)es_ES
dc.subject.otherHypothesis testes_ES
dc.subject.otherMaximum likelihood (ML) estimationes_ES
dc.subject.otherWilks' theoremes_ES
dc.titleTesting blind separability of complex Gaussian mixtureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1016/j.sigpro.2013.08.010es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.sigpro.2013.08.010
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo

© 2014 Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivadaExcepto si se señala otra cosa, la licencia del ítem se describe como © 2014 Elsevier. Licensed under the Creative Commons Reconocimiento-NoComercial-SinObraDerivada