• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    •   UCrea
    • UCrea Investigación
    • Departamento de Matemática Aplicada y Ciencias de la Computación
    • D20 Proyectos de Investigación
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Error estimates for the discretization of the velocity tracking problem

    Ver/Abrir
    ErrorEstimatesFor.pdf (379.0Kb)
    Identificadores
    URI: http://hdl.handle.net/10902/9356
    DOI: 10.1007/s00211-014-0680-7
    ISSN: 0029-599X
    ISSN: 0945-3245
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Casas Rentería, EduardoAutoridad Unican; Chrysafinos, Konstantinos
    Fecha
    2015-08
    Derechos
    © Springer. The final publication is available at Springer via http://dx.doi.org/10.1365/s13291-014-0109-3
    Publicado en
    Numerische Mathematik, 2015,130(4), 615–643
    Editorial
    Springer New York LLC
    Resumen/Abstract
    In this paper we are continuing our work (Casas and Chrysafinos, SIAM J Numer Anal 50(5):2281–2306, 2012), concerning a priori error estimates for the velocity tracking of two-dimensional evolutionary Navier–Stokes flows. The controls are of distributed type, and subject to point-wise control constraints. The discretization scheme of the state and adjoint equations is based on a discontinuous time-stepping scheme (in time) combined with conforming finite elements (in space) for the velocity and pressure. Provided that the time and space discretization parameters, t and h respectively, satisfy t = Ch2, error estimates of order O(h2) and O(h 3/2 – 2/p ) with p > 3 depending on the regularity of the target and the initial velocity, are proved for the difference between the locally optimal controls and their discrete approximations, when the controls are discretized by the variational discretization approach and by using piecewise-linear functions in space respectively. Both results are based on new duality arguments for the evolutionary Navier–Stokes equations.
    Colecciones a las que pertenece
    • D20 Artículos [468]
    • D20 Proyectos de Investigación [326]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España