• Mi UCrea
    Ver ítem 
    •   UCrea
    • UCrea Académico
    • Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación
    • Grado en Ingeniería en Tecnologías Industriales
    • G2453 Trabajos académicos
    • Ver ítem
    •   UCrea
    • UCrea Académico
    • Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación
    • Grado en Ingeniería en Tecnologías Industriales
    • G2453 Trabajos académicos
    • Ver ítem
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stochastic – based optimisation methods for finding optimum part orientation in additive manufacturing

    Ver/Abrir
    387042.pdf (3.161Mb)
    Identificadores
    URI: http://hdl.handle.net/10902/9226
    Compartir
    RefworksMendeleyBibtexBase
    Estadísticas
    Ver Estadísticas
    Google Scholar
    Registro completo
    Mostrar el registro completo DC
    Autoría
    Pérez Vieites, Alberto
    Fecha
    2016-09-14
    Director/es
    Dodwell, Timothy
    Derechos
    © Alberto Pérez Vieites
    Palabras clave
    Additive manufacturing
    Part orientation
    Stochastic
    Non-convex
    Particle swarm optimisation
    Resumen/Abstract
    Additive Manufacturing has meant a revolution in the industrial world and its applications to different fields are increasing. However, within this technique, there is a problem that engineers have to face and which should be highlighted: part orientation. A component can be built up with different configurations and each one can offer different production performance, for example, one orientation can improve the cost of the part while others can worsen it. The problem resides in choosing the best part orientation that satisfies certain manufacturing parameters which are compromised each other. The objective of this project is to find an adequate part orientation in a problem proposed by Airbus Group Innovations (AGI). To achieve it, optimisation methods were employed, namely, a stochastic optimisation technique based on Stochastic Annealing (SA) which was implemented in a Matlab™ programme. Before facing the Airbus problem, a study on simpler examples was carried out to characterise the behaviour of the method. The results obtained were satisfactory and it was proven that the chosen method solves the problem in an efficient way. Initially, a basic method was developed and later it was updated with the incorporation of two improvements which noticeably enhanced the searching performance of the developed optimisation tool. The best outcomes were acquired with the improvement that involved adding a characteristic of an optimisation method called Particle Swarm Optimisation (PSO).
    Colecciones a las que pertenece
    • G2453 Trabajos académicos [421]

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España
     

     

    Listar

    Todo UCreaComunidades y coleccionesFecha de publicaciónAutoresTítulosTemasEsta colecciónFecha de publicaciónAutoresTítulosTemas

    Mi cuenta

    AccederRegistrar

    Estadísticas

    Ver Estadísticas
    Sobre UCrea
    Qué es UcreaGuía de autoarchivoArchivar tesisAcceso abiertoGuía de derechos de autorPolítica institucional
    Piensa en abierto
    Piensa en abierto
    Compartir

    UNIVERSIDAD DE CANTABRIA

    Repositorio realizado por la Biblioteca Universitaria utilizando DSpace software
    Contacto | Sugerencias
    Metadatos sujetos a:licencia de Creative Commons Reconocimiento 4.0 España