dc.contributor.author | Casas Rentería, Eduardo | |
dc.contributor.author | Kogut, Peter I. | |
dc.contributor.author | Leugering, Günter | |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2016-09-07T14:30:20Z | |
dc.date.available | 2016-09-07T14:30:20Z | |
dc.date.issued | 2016-06-01 | |
dc.identifier.issn | 0363-0129 | |
dc.identifier.issn | 1095-7138 | |
dc.identifier.other | MTM2011-22711 | es_ES |
dc.identifier.other | MTM2014-57531-P | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/9018 | |
dc.description.abstract | We study a Dirichlet optimal control problem for a quasi-linear monotone elliptic equation, the so-called weighted p-Laplace problem. The coefficient of the p-Laplacian, the weight u, we take as a control in BV (Ω) ∩ L∞(Ω). In this article, we use box-type constraints for the control such that there is a strictly positive lower and some upper bound. In order to handle the inherent degeneracy of the p-Laplacian, we use a regularization, sometimes referred to as the ε-p-Laplacian. We derive existence and uniqueness of solutions to the underlying boundary value problem and the optimal control problem. In fact, we introduce a two-parameter model for the weighted ε-p- Laplacian, where we approximate the nonlinearity by a bounded monotone function, parametrized by k. Further, we discuss the asymptotic behavior of the solutions to the regularized problem on each (ε, k)-level as the parameters tend to zero and infinity, respectively. | es_ES |
dc.description.sponsorship | This author’s research was supported by the DFG-EC315 “Engineering of Advanced Materials” and by the Spanish Ministerio de Economía y Competitividad under projects MTM2011-22711 and MTM2014-57531-P. | es_ES |
dc.format.extent | 17 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Society for Industrial and Applied Mathematics | es_ES |
dc.rights | © 2016 Society for Industrial and Applied Mathematics | es_ES |
dc.source | SIAM Journal on Control and Optimization, 2016, 54(3), 1406–1422 | es_ES |
dc.subject.other | Nonlinear Dirichlet problem | es_ES |
dc.subject.other | Optimal control | es_ES |
dc.subject.other | Control in coefficients | es_ES |
dc.title | Approximation of optimal control problems in the coefficient for the p-Laplace equation. I. Convergence result | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1137/15M1028108 | |
dc.type.version | publishedVersion | es_ES |