The Asymptotic and Numerical Inversion of the Marcum Q-Function
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/8061DOI: 10.1111/sapm.12050
ISSN: 0022-2526
ISSN: 1467-9590
Registro completo
Mostrar el registro completo DCFecha
2014Derechos
This is the peer reviewed version of the following article:The Asymptotic and Numerical Inversion of the Marcum
Q-Function. Studies in Applied Mathematics, Volume 133, Issue 2, pages 257–278, August 2014, which has been published in final form at https://doi.org/10.1111/sapm.12050. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Publicado en
Studies in Applied Mathematics
Volume 133, Issue 2, pages 257–278, August 2014
Editorial
Blackwell Publishing Ltd
Enlace a la publicación
Resumen/Abstract
The generalized Marcum functions appear in problems of technical and scientific areas such as, for example, radar detection and communications. In mathematical statistics and probability theory these functions are called the noncentral gamma or the noncentral chi-squared cumulative distribution functions. In this paper, we describe a new asymptotic method for inverting the generalized Marcum Q-function and for the complementary Marcum P-function. Also, we show how monotonicity and convexity properties of these functions can be used to find initial values for reliable Newton or secant methods to invert the function. We present details of numerical computations that show the reliability of the asymptotic approximations.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]