Credit scoring
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/8056Registro completo
Mostrar el registro completo DCAutoría
Sánchez Bilbao, PabloFecha
2015-09Director/es
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
Palabras clave
Credit scoring
Riesgo
Paneles de control
Modelos estadísticos
Software
Risk
Control panels
Statistical models
Resumen/Abstract
RESUMEN: El credit scoring es un sistema de modelos de decisión a través del cual se calcula la probabilidad de que un sujeto sea capaz de devolver o no un crédito comercial.
Este trabajo realiza una simulación de este modelo con la intención de familiarizarse con el funcionamiento del mismo, así como con el marco teórico que este conlleva.
El uso del credit scoring da respuesta a un problema generalizado en las entidades financieras como es la correcta estimación y valoración del riesgo del cliente o, en este caso, del solicitante del crédito. Para realizar eficazmente esta estimación es necesario un análisis previo de los datos tanto personales como económicos del cliente así como de las características del crédito solicitado.
Los métodos clásicos estadísticos serán fundamentales para el desarrollo de este modelo, siendo los más utilizados el análisis de regresión y los modelos no lineales logit y probit.
La implementación de este sistema en las entidades financieras supone un importante cambio, puesto que los procesos de análisis de riesgo crediticio han pasado de realizarse manualmente a automatizarse. Esto conlleva una significativa reducción en tiempo y costes pero también importantes cambios en los hábitos de los trabajadores.
Los resultados obtenidos por este modelo facilitan a la entidad el trabajo, ya que se elimina el factor de subjetividad en las valoraciones y proporciona soluciones rápidas en la valoración del riesgo crediticio.
ABSTRACT: Credit Scoring is a decision-making model system through which the probability that a subject is able to repay a trade credit or not shall be calculated. This paper performs a simulation of this model intended to become acquainted with how the operation works, as well as the theoretical framework that this entails.
Use of credit scoring responds to a widespread problem in the financial institutions and their accurate estimation of customer´s credit risk profile. To effectively perform this estimate is necessary a prior analysis of personal customer data as well as economic characteristics of the credit requested.
Classical statistical methods will be fundamental for the development of this model. Regression analysis and nonlinear models logit and probit are most commonly used.
The implementation of this system in financial institutions represents an important change since the processes of credit risk analysis have been carried out manually to be automated. This leads to a significant reduction in time and costs but also important changes in the behaviour of workers.
The results obtained by this model make work in the institution easier due its subjectivity in assessments is eliminated and provides fast solutions in the valuation of credit risk.
Colecciones a las que pertenece
- G1505 Trabajos académicos [1494]