dc.contributor.author | Gómez Pérez, Domingo | es_ES |
dc.contributor.author | Gutiérrez Gutiérrez, Jaime | es_ES |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2016-02-11T13:37:08Z | |
dc.date.available | 2016-02-11T13:37:08Z | |
dc.date.issued | 2014 | es_ES |
dc.identifier.issn | 0025-5718 | es_ES |
dc.identifier.issn | 1088-6842 | es_ES |
dc.identifier.other | MTM2011-24678 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/8037 | |
dc.description.abstract | Let $ p$ be a prime and $ \mathbb{F}_p$ the finite field with $ p$ elements. We show how, when given an irreducible bivariate polynomial $ F \in \mathbb{F}_p[X,Y]$ and an approximation to a zero, one can recover the root efficiently, if the approximation is good enough. The strategy can be generalized to polynomials in the variables $ X_1,\ldots ,X_m$ over the field $ \mathbb{F}_p$. These results have been motivated by the predictability problem for nonlinear pseudorandom number generators and other potential applications to cryptography. | es_ES |
dc.format.extent | 13 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | American Mathematical Society | es_ES |
dc.rights | © American Mathematical Society First published in Mathematics of computation in vol.83 (2014), pp. 2953-2965, published by the American Mathematical Society | es_ES |
dc.source | Mathematics of computation 83 (2014), 2953-2965 | es_ES |
dc.title | Recovering zeros of polynomials modulo a prime | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1090/S0025-5718-2014-02808-1 | es_ES |
dc.type.version | acceptedVersion | es_ES |