Recovering zeros of polynomials modulo a prime
Ver/ Abrir
Registro completo
Mostrar el registro completo DCFecha
2014Derechos
© American Mathematical Society First published in Mathematics of computation in vol.83 (2014), pp. 2953-2965, published by the American Mathematical Society
Publicado en
Mathematics of computation 83 (2014), 2953-2965
Editorial
American Mathematical Society
Resumen/Abstract
Let $ p$ be a prime and $ \mathbb{F}_p$ the finite field with $ p$ elements. We show how, when given an irreducible bivariate polynomial $ F \in \mathbb{F}_p[X,Y]$ and an approximation to a zero, one can recover the root efficiently, if the approximation is good enough. The strategy can be generalized to polynomials in the variables $ X_1,\ldots ,X_m$ over the field $ \mathbb{F}_p$. These results have been motivated by the predictability problem for nonlinear pseudorandom number generators and other potential applications to cryptography.
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [328]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]