Mostrar el registro sencillo

dc.contributor.authorSegura Sala, José Javier 
dc.contributor.otherUniversidad de Cantabriaes_ES
dc.date.accessioned2016-02-11T11:47:19Z
dc.date.available2016-02-11T11:47:19Z
dc.date.issued2014
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.otherMTM2012-34787es_ES
dc.identifier.urihttp://hdl.handle.net/10902/8036
dc.description.abstractThe generalized Marcum functions Qlðx; yÞ and Plðx; yÞ have as particular cases the noncentral v2 and gamma cumulative distributions, which become central distributions (incomplete gamma function ratios) when the non-centrality parameter x is set to zero. We analyze monotonicity and convexity properties for the generalized Marcum functions and for ratios of Marcum functions of consecutive parameters (differing in one unity) and we obtain upper and lower bounds for the Marcum functions. These bounds are proven to be sharper than previous estimations for a wide range of the parameters. Additionally we show how to build convergent sequences of upper and lower bounds. The particularization to incomplete gamma functions, together with some additional bounds obtained for this particular case, lead to combined bounds which improve previously existing inequalitieses_ES
dc.format.extent16 p.es_ES
dc.language.isoenges_ES
dc.rights© Elsevieres_ES
dc.sourceApplied Mathematics and Computation 246 (2014) 399–415es_ES
dc.titleMonotonicity properties and bounds for the chi-squareand gamma distributions.es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publisherVersionhttp://dx.doi.org/10.1016/j.amc.2014.08.034es_ES
dc.rights.accessRightsopenAccesses_ES
dc.identifier.DOI10.1016/j.amc.2014.08.034
dc.type.versionacceptedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo