Monotonicity properties and bounds for the chi-squareand gamma distributions.
Ver/ Abrir
Registro completo
Mostrar el registro completo DCAutoría
Segura Sala, José Javier
Fecha
2014Derechos
© Elsevier
Publicado en
Applied Mathematics and Computation 246 (2014) 399–415
Enlace a la publicación
Resumen/Abstract
The generalized Marcum functions Qlðx; yÞ and Plðx; yÞ have as particular cases the noncentral v2 and gamma cumulative distributions, which become central distributions (incomplete gamma function ratios) when the non-centrality parameter x is set to zero. We analyze monotonicity and convexity properties for the generalized Marcum functions and for ratios of Marcum functions of consecutive parameters (differing in one unity) and we obtain upper and lower bounds for the Marcum functions. These bounds are proven to be sharper than previous estimations for a wide range of the parameters. Additionally we show how to build convergent sequences of upper and lower bounds. The particularization to incomplete gamma functions, together with some additional bounds obtained for this particular case, lead to combined bounds which improve previously existing inequalities
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]