Algorithm 939: Computation of the Marcum Q-function
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/8031DOI: 10.1145/2591004
ISSN: 0098-3500
ISSN: 1557-7295
Registro completo
Mostrar el registro completo DCFecha
2014Derechos
© ACM, 2014. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM Transactions on Mathematical Software, http://dx.doi.org/10.1145/2591004.
Publicado en
ACM Transactions on Mathematical Software, Vol. 40, No. 3, Article 20, Publication date: April 2014.
Editorial
Association for Computing Machinery (ACM)
Enlace a la publicación
Resumen/Abstract
Methods and an algorithm for computing the generalized Marcum Q.function (QƒÊ(x, y)) and the complementary function (PƒÊ(x, y)) are described. These functions appear in problems of different technical and scientific areas such as, for example, radar detection and communications, statistics and probability theory, where they are called the non-central chi-square or the non central gamma cumulative distribution functions. The algorithm for computing the Marcum functions combines different methods of evaluation in different regions: series expansions, integral representations, asymptotic expansions, and use of three-term homogeneous recurrence relations. A relative accuracy close to 10.12 can be obtained in the parameter region (x, y, ƒÊ) ¸ [0, A] ~ [0, A] ~ [1, A], A = 200, while for larger parameters the accuracy decreases (close to 10.11 for A = 1000 and close to 5 ~ 10.11 for A = 10000).
Colecciones a las que pertenece
- D20 Artículos [468]
- D20 Proyectos de Investigación [326]
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]