dc.contributor.author | Gómez Pérez, Domingo | es_ES |
dc.contributor.author | Nicolás, Alejandro P. | es_ES |
dc.contributor.author | Ostafe, Alina | es_ES |
dc.contributor.author | Sadornil Renedo, Daniel | es_ES |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2016-02-09T12:10:28Z | |
dc.date.available | 2016-02-09T12:10:28Z | |
dc.date.issued | 2014 | es_ES |
dc.identifier.issn | 0213-2230 | es_ES |
dc.identifier.issn | 2235-0616 | es_ES |
dc.identifier.other | MTM2010-18370-C04-01 | es_ES |
dc.identifier.other | MTM2010-21580-C02-02 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/8028 | |
dc.description.abstract | We use the theory of resultants to study the stability, that is, the property of having all iterates irreducible, of an arbitrary polynomial f over a finite field Fq. This result partially generalizes the quadratic polynomial case described by R. Jones and N. Boston. Moreover, for p = 3, we show that certain polynomials of degree three are not stable. We also use the Weil bound for multiplicative character sums to estimate the number of stable polynomials over a finite field of odd characteristic. | es_ES |
dc.format.extent | 12 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | European Mathematical Society | es_ES |
dc.rights | © European Mathematical Society Publishing House. Publicado originalmente en la Revista matemática iberoamericana, Vol. 30, Nº 2 (2014), Pp. 523-535 | es_ES |
dc.source | Revista Matemática Iberoamericana, Vol. 30, N. 2 (2014), Pp. 523-535 | es_ES |
dc.title | Stable Polynomials over Finite Fields | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | DOI: 10.4171/RMI/791 | es_ES |
dc.type.version | acceptedVersion | es_ES |