On irreducible divisors of iterated polynomials
Ver/ Abrir
Identificadores
URI: http://hdl.handle.net/10902/8026DOI: 10.4171/RMI/809
ISSN: 0213-2230
ISSN: 2235-0616
Registro completo
Mostrar el registro completo DCFecha
2014Derechos
© European Mathematical Society Publishing House. Publicado originalmente en la Revista matemática iberoamericana, Vol. 30, Nº 4, 2014, págs. 1123-1134
Publicado en
Revista matemática iberoamericana, Vol. 30, Nº 4, págs. 1123-1134
Editorial
European Mathematical Society, para la Real Sociedad Matemática Española
Resumen/Abstract
D. Gómez-Pérez, A. Ostafe, A.P. Nicolás and D. Sadornil have recently shown that for almost all polynomials f?Fq[X]f?Fq[X] over the finite field of qq elements, where qq is an odd prime power, their iterates eventually become reducible polynomials over FqFq. Here we combine their method with some new ideas to derive finer results about the arithmetic structure of iterates of ff. In particular, we prove that the nnth iterate of ff has a square-free divisor of degree of order at least n1+o(1)n1+o(1) as n?8n?8 (uniformly in qq).
Colecciones a las que pertenece
- D21 Artículos [417]
- D21 Proyectos de Investigación [326]