dc.contributor.author | Chen, Zhixiong | es_ES |
dc.contributor.author | Gómez Pérez, Domingo | es_ES |
dc.contributor.author | Pirsic, Ísabel | es_ES |
dc.contributor.other | Universidad de Cantabria | es_ES |
dc.date.accessioned | 2016-02-09T09:24:35Z | |
dc.date.available | 2016-02-09T09:24:35Z | |
dc.date.issued | 2014-03 | es_ES |
dc.identifier.issn | 0031-5303 | es_ES |
dc.identifier.issn | 1588-2829 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10902/8025 | |
dc.description.abstract | Lattice tests are quality measures for assessing the intrinsic structure of pseudorandom number generators. Recently a new lattice test has been introduced by Niederreiter and Winterhof. In this paper, we present a general inequality that is satisfied by any periodic sequence. Then, we analyze the behavior of the linear congruential generators on elliptic curves (EC-LCG) under this new lattice test and prove that the EC-LCG passes it up to very high dimensions. We also use a result of Brandstätter and Winterhof on the linear complexity profile related to the correlation measure of order k to present lower bounds on the linear complexity profile of some binary sequences derived from the EC-LCG. | es_ES |
dc.format.extent | 12 p. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Akadémiai Kiadó (Budapest) / Springer | es_ES |
dc.rights | © Springer International Publishing. The final publication is available at Springer via http://dx.doi.org/10.1007/s10998-014-0021-8 | es_ES |
dc.source | Periodica Mathematica Hungarica, Volume 68, Issue 1, pp 1-12 | es_ES |
dc.title | On lattice profile of the elliptic curve linear congruential generators | es_ES |
dc.type | info:eu-repo/semantics/article | es_ES |
dc.relation.publisherVersion | http://link.springer.com/article/10.1007%2Fs10998-014-0021-8 | es_ES |
dc.rights.accessRights | openAccess | es_ES |
dc.identifier.DOI | 10.1007/s10998-014-0021-8 | es_ES |
dc.type.version | acceptedVersion | es_ES |